AER/AGS Special Report 107

Hydrocarbon Analysis by Thermal Desorption Gas Chromatography on Selected Alberta Strata (Viking, Westgate, Cardium, Wilrich, Exshaw)

AER/AGS Special Report 107

Hydrocarbon Analysis by Thermal Desorption Gas Chromatography on Selected Alberta Strata (Viking, Westgate, Cardium, Wilrich, Exshaw)

J.G. Pawlowicz, S.D.A. Anderson* and D. Rokosh

* Corresponding author

September 2017

©Her Majesty the Queen in Right of Alberta, 2017 ISBN 978-1-4601-1678-4

The Alberta Energy Regulator/Alberta Geological Survey (AER/AGS), its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness or reliability of this publication. Any references to proprietary software and/or any use of proprietary data formats do not constitute endorsement by AER/AGS of any manufacturer's product.

If you use information from this publication in other publications or presentations, please acknowledge the AER/AGS. We recommend the following reference format:

Pawlowicz, J.G., Anderson, S.D.A. and Rokosh, C.D. (2017): Hydrocarbon analysis by thermal desorption gas chromatography on selected Alberta strata (Viking, Westgate, Cardium, Wilrich, Exshaw); Alberta Energy Regulator, AER/AGS Special Report 107, 27 p.

Published September 2017 by:

Alberta Energy Regulator Alberta Geological Survey 4th Floor, Twin Atria Building 4999 – 98th Avenue Edmonton, AB T6B 2X3 Canada

 Tel:
 780.638.4491

 Fax:
 780.422.1459

 E-mail:
 AGS-Info@aer.ca

 Website:
 ags.aer.ca

Acknowledgements

This report includes data generated to support the AGS report "Summary of Alberta's shaleand siltstone-hosted hydrocarbon resource potential" (2012) and subsequent unconventional resource evaluations. Funding was provided in part by Alberta Energy. The authors thank B. Fildes and M. Grobe for their technical editing, comments and advice during the preparation of this release.

Abstract

This report publishes a summary report from Trican Geological Solutions using thermal desorption gas chromatography to identify and quantify hydrocarbon compositions and to estimate specific and API gravities of six core samples from five well locations in Alberta. This report summarizes the methods and analytical results.

Hydrocarbon paraffins, aromatics and napthenes were detected and quantified. The analyzed samples are mainly dominated by C6-C40 straight chained alkane hydrocarbons, aromatic hydrocarbons, and napthenes. Using simulated distillation methods, initial and final boiling points were determined.

1 Introduction

In 2012, the Alberta Geological Survey (AGS) published a report that determined the quantity and spatial extent of shale- and siltstone-hosted hydrocarbons (oil, gas, and natural gas liquids) in the province (Rokosh et al., 2012). The AGS is releasing client reports and digital data to disseminate knowledge from the project. These data and reports can be accessed from the AGS website (<u>http://ags.aer.ca</u>).

This report disseminates results on thermal desorption analyses, performed by Trican Geological Solutions, of six core samples from various well locations and was carried out to identify and quantify hydrocarbon compositions and to estimate the specific and API gravities.

2 Sample Locations and Descriptions

Table 1 lists the samples and sites examined in the study.

AGS Sample ID	UWI	Formation	Sample Type	Sample Depth (m)
11221	100/16-23-058-24W4/00	Viking	Core	732.80
11222	100/16-23-058-24W4/00	Westgate	Core	736.40
13256	100/04-03-044-07W5/00	Cardium	Core	1820.53
13285	100/04-18-060-20W5/00	Cardium	Core	1611.55
13807	100/07-15-098-02W6/00	Wilrich	Core	666.00
13826	102/08-07-075-05W5/00	Exshaw	Core	1086.50

Table 1. Samples collected for thermal desorption gas chromatography analysis.

References

Rokosh, C.D., Lyster, S., Anderson, S.D.A., Beaton, A.P., Berhane, H., Brazzoni, T., Chen, D., Cheng, Y., Mack, T., Pana, C. and Pawlowicz, J.G. (2012): Summary of Alberta's shale- and siltstone-hosted hydrocarbon resource potential; Energy Resources Conservation Board, ERCB/AGS Open File Report 2012-06, 327 p., URL < http://ags.aer.ca/publications/OFR_2012_06.html > [March 2017].

Hydrocarbon Analyses by Thermal Desorption-Gas Chromatography

AER

Various Wells

Alberta Energy Regulator

April 2014

TRICAN GEOLOGICAL SOLUTIONS LTD 621-37th Ave NE Calgary, Alberta T2E 2M1 (403) 250-5582 http://geologicalsolutions.trican.ca

TABLE OF CONTENTS

DISCLAIMER
SAMPLE SUMMARY5
EXECUTIVE SUMMARY
INTRODUCTION
Thermal Desorption-Gas Chromatography Analysis
RESULTS AND INTERPRETATION: TD-GC
Hydrocarbon Compositions6
Simulated Distillation
Chromatogram Quality7
Table A - Summary of the hydrocarbon rich zones identified in six samples from various locations
Table 2 - Thermal desorption of samples 13256 and 13285 analyzed and quantified using thermal desorption-gas chromatography.
Table 3 - Thermal desorption of samples 13807 and 13826 analyzed and quantified using thermal desorption-gas
Table 4 – Simulated distillation of samples 11221, 11222, and 13256 analyzed and quantified using thermal
desorption-gas chromatography. 12 Table 5 – Simulated distillation of samples 13285, 13807, and 13826 analyzed and quantified using thermal desorption-gas chromatography. 12
CONCLUSIONS
APPENDIX A: ANALYSIS, METHODS AND OUTPUTS
Methods and sample details16
TD-GC Peak Patterns - Explained17
Figure 1: An example of a gas chromatogram of sample 11222 displaying typical hydrocarbons identified in these samples. Aromatic hydrocarbons (benzene, ethylbenzene, toluene, trimethylbenzene, and o,m,p-xylenes), paraffins (alkanes) and napthenes are present
APPENDIX B: MOLE, MASS AND VOLUME FRACTION PLOTS
APPENDIX C: SIMULATED DISTILLATION %YIELD PLOTS
REFERENCES

DISCLAIMER

Trican Geological Solutions Ltd. shall not, except in the case of gross or wilful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation made by our officers, agents, or employees.

Trican Geological Solutions Ltd. does not represent that this communication, including any files attached, is free from computer viruses or other faults or defects. Trican Geological Solutions Ltd. will not be liable to any person for any loss or damage, including direct, consequential or economic loss or damage however caused, and whether by negligence or otherwise may result directly or indirectly from the receipt or use of this communication or any files attached to this communication.

Well Locations:	100/16-23-058-24W4/00
	100/04-03-044-07W5/00
	100/04-18-060-20W5/00
	100/07-15-098-02W6/00
	102/08-07-075-05W5/00
Formations:	Viking, Westgate, Cardium, Wilrich, Exshaw
# of Samples Analyzed:	6
Sample Type:	Core
Analyses Completed:	Thermal Desorption-Gas Chromatography

EXECUTIVE SUMMARY

Thermal desorption gas chromatography, or TD-GC, was used to analyze the thermal desorption of six core samples from various wells. Hydrocarbon paraffins, aromatics and napthenes were detected and quantified. The analyzed samples are mainly dominated by C6-C40 straight chained alkane hydrocarbons, aromatic hydrocarbons, and napthenes. Using simulated distillation methods, initial and final boiling points were determined

Analysis of these six samples yielded no obvious trends in hydrocarbon content, peak indicators, or simulated distillation results. Calculated API gravity ranged from 33.1°API to 42.6°API with an average of 38.7°API. Hydrocarbon rich zones ranged from C6-C27, with modal identified peaks ranging from C8 to C15 and an average of C12. Initial boiling points ranged from 58°C to 74°C, averaging at 64°C. Final boiling points ranged from 484°C to 523°C, with an average of 503°C.

INTRODUCTION

Thermal Desorption-Gas Chromatography Analysis

Thermal Desorption analyses of six core samples from various well locations was carried out to identify and quantify the hydrocarbon compositions and to estimate the specific and API gravities. This report summarizes the methods and analytical results.

Thermal desorption-gas chromatography is a method in which a powdered rock sample or an extracted liquid sample is heated to thermally desorb hydrocarbons within the sample. Volatilized hydrocarbons are cryogenically cooled and transferred to an Agilent HP-5 column where components are separated based on physical properties.

The detector used by the TD-GC is a flame ionization detector or FID. The FID operates by combusting a compound to give it a charge. The charged particles then contact the detector and transfer their charge. The FID records this change in charge as a peak which relates to concentrations based on calibrated standards.

The resulting chromatograms are analysed using Agilent ChemStation methods to identify and quantify the hydrocarbon concentrations. Hydrocarbon grouping is applied through the use of Agilent SimDis methods. Details of the analysis, sample preparation, methods and data plots are provided in Appendices A-C.

RESULTS AND INTERPRETATION: TD-GC

Hydrocarbon Compositions

The quantitative hydrocarbon concentrations are tabulated in Tables 1-3. A specific gravity of the fluid has been calculated using densities for the hydrocarbons analysed. The specific gravity has been re-calculated into API gravity. For each sample, please note the percentage of the peaks from the chromatograms that have been identified. Mole, mass and volume fraction plots are provided in Appendix B at the end of this report.

Hydrocarbon rich zones have been tabulated below in Table A. The hydrocarbon rich zone in the Viking Formation was identified in the range from C6-C16 with a modal peak of C13. Hydrocarbon rich zone of the Westgate Formation was identified in the C10-C23 range with a modal peak of C14. Hydrocarbon rich zones in the Cardium Formation were identified in the C6-C20 range with a modal peak of C15. In the Wilrich Formation the hydrocarbon rich zone ranged from C7-C16 with a modal peak of C8. From the Exshaw Formation the hydrocarbon rich zone ranged from C8-C27 with a modal peak of C9.

Simulated Distillation

Simulated distillation results are tabulated in Tables 4-5. Peak data from the chromatogram is collected and hydrocarbons are grouped by boiling point. Temperature and carbon number are then determined at a variety of percent yields ranging from 0.5% to 99.5%. Percent Yield plots are provided in Appendix C at the end of this report.

Initial boiling point (IBP, 0.5% yield), final boiling point (FBP, 99.5% yield) and related carbon numbers have been tabulated below in Table A. In the Viking Formation the initial boiling point was 58°C with a carbon number of C6, and the final boiling point was 523°C with a carbon number of C40. The Westgate Formation was determined to have an initial boiling point of 62°C with a carbon number of C6, and a final boiling point of 508°C with a carbon number of C38. In the Cardium Formation sample 13256 had an initial boiling point of 70°C and a carbon number of C6, with a final boiling point of 484°C and a carbon number of C34. In the Cardium Formation sample 13285 had an initial boiling point of 60°C with a carbon number of C6, and the final boiling point was 485°C with a carbon number of C34. The Wilrich Formation was determined to have an initial boiling point of 61°C with a carbon number of C6, and a final boiling point of 506°C with a carbon number of C38. In the Exshaw Formation the initial boiling point of 506°C with a carbon number of C6, and a final boiling point of 506°C with a carbon number of C38. In the Exshaw Formation the initial boiling point of 506°C with a carbon number of C6, and the final boiling point of 506°C with a carbon number of C38. In the Exshaw Formation the initial boiling point was 74°C with a carbon number of C6, and the final boiling point was 511°C with a carbon number of C38.

Chromatogram Quality

To determine the quality of results gathered, each chromatogram is assessed and given a quality indicator. The criteria assessed to determine chromatogram quality are abnormal baseline drift, peak response, and a consistent bell-curve shape to the peaks. Chromatograms which are assessed as "Best" and "Excellent" have little to no baseline drift, excellent peak response, and a very consistent bell-curve. "Good" and "Ok" chromatograms have moderate baseline drift, good peak response, and a somewhat consistent bell-curve. "Poor" and "No Good" chromatograms have significant baseline drift, poor peak response, and few hydrocarbons which can be identified. Hydrocarbon content present in the sample is the largest factor in resulting chromatogram quality, with higher hydrocarbon content usually equalling better chromatogram quality.

Table A - Summary of the hydrocarbon rich zones identified in six samples from various locations.

	Hydrocarbon Analysis Summary Table for ERCB. Various Wells																	
Paraffins a Peak Indicators					Sin	Simulated Distillation			F									
Sample	UWI	Formation	Sample Type	Sample Depth (m)	% Light Condensate	% Heavy Condensate	% Napthenes	% Aromatics	% Biomarker	Range >2%	Peak	Initial Boiling Point (°C)	Carbon Number	Final Boiling Point (°C)	Carbon Number	Calculated Specific Gravity	Calculated AF gravity	Chromatograi Quality
11221	100/16-23-058-24W4/00	Viking	Core	732.80	35.86	47.45	4.58	10.90	1.21	C6-C16	C13	58	C6	523	C40	0.813	42.6	Poor
11222	100/16-23-058-24W4/00	Westgate	Core	736.40	15.98	67.18	2.19	5.55	9.10	C10-C23	C14	62	C6	508	C38	0.838	37.4	Poor
13256	100/04-03-044-07W5/00	Cardium	Core	1820.53	15.39	77.28	0.75	2.65	3.95	C11-C16	C14	70	C6	484	C34	0.831	38.7	Good
13285	100/04-18-060-20W5/00	Cardium	Core	1611.55	18.80	52.64	5.72	15.78	7.05	C6-C20	C15	60	C6	485	C34	0.827	39.6	Ok
13807	100/07-15-098-02W6/00	Wilrich	Core	666.00	22.56	32.01	5.48	36.80	3.16	C7-C16	C8	61	C6	506	C38	0.822	40.6	Poor
13826	102/08-07-075-05W5/00	Exshaw	Core	1086.50	13.93	61.28	0.78	15.45	8.60	C8-C27	C9	74	C6	511	C38	0.860	33.1	Ok
* Light Co	* Light Condensates consist of nC6 through nC12																	
* <u>Heavy Condensates</u> consist of nC13 through nC40																		
* Naphthenes. consist of Cyclopentane, Methylcyclopentane, Cyclohexane, Methylcyclohexane																		
*Aromatics consist of Benzenes, Toluene, Ethylbenzene, Xylenes																		
* Biomark	Biomarkers consist of Pristane & Phytane																	

	11221		732.80 m	
ERCB Various Wells	Normalized	Mol Fraction	Mass	Volume
	Area %	inor ruccion	Fraction	Fraction
Cyclopentane	0.66	0.02	0.01	0.0070
C6	0.91	0.02	0.01	0.0110
Methylcyclopentane	1	0.02	0.01	0.0100
Benzene	0.26	0.01	0.00	0.0020
Cyclohexane	2.75	0.05	0.03	0.0270
C7	0.14	0.00	0.00	0.0020
Methylcyclohexane	0.17	0.00	0.00	0.0020
Toluene	0.6	0.01	0.01	0.0050
C8	2.44	0.03	0.02	0.0270
Ethylbenzene	1.27	0.02	0.01	0.0110
m,p-Xylene	4.17	0.06	0.04	0.0370
o-Xylene	2	0.03	0.02	0.0170
C9	2.22	0.03	0.02	0.0240
Trimethylbenzene	2.6	0.04	0.03	0.0230
C10	4.21	0.05	0.04	0.0440
C11	10.38	0.11	0.10	0.1070
C12	15.56	0.15	0.16	0.1590
C13	18.42	0.16	0.18	0.1860
C14	11.38	0.09	0.11	0.1150
C15	5.28	0.04	0.05	0.0530
C16	2.51	0.02	0.03	0.0250
C17	1.18	0.01	0.01	0.0120
Pristane	0.83	0.01	0.01	0.0080
C18	0.39	0.00	0.00	0.0040
Phytane	0.38	0.00	0.00	0.0040
C19	0.25	0.00	0.00	0.0020
C20	0.63	0.00	0.01	0.0060
C21	0.53	0.00	0.01	0.0050
C22	2.33	0.01	0.02	0.0220
C23	0.23	0.00	0.00	0.0020
C24	0.25	0.00	0.00	0.0020
C25	0.25	0.00	0.00	0.0020
C20	0.35	0.00	0.00	0.0030
C27	2.19	0.00	0.00	0.0000
C28	3.18	0.01	0.03	0.0300
C29	0	0.00	0.00	0.0000
C30	0.04	0.00	0.00	0.0000
C32	0.04	0.00	0.00	0.0000
C32	0	0.00	0.00	0.0000
C24	0.25	0.00	0.00	0.0000
C34	0.25	0.00	0.00	0.0030
C35	0	0.00	0.00	0.0000
C27	0	0.00	0.00	0.0000
C37	0	0.00	0.00	0.0000
C20	0	0.00	0.00	0.0000
C40	0	0.00	0.00	0.0000
C40	0	0.00	0.00	0.0000

11222		736.40 m	
Normalized	Mol Fraction	Mass	Volume
Area %	Worraction	Fraction	Fraction
0.62	0.02	0.01	0.0060
0.46	0.01	0.01	0.0050
0.59	0.01	0.01	0.0060
0.13	0.00	0.00	0.0010
0.86	0.02	0.01	0.0090
0.48	0.01	0.01	0.0050
0.12	0.00	0.00	0.0010
0.72	0.02	0.01	0.0060
1.46	0.03	0.02	0.0160
0.47	0.01	0.01	0.0040
1.52	0.03	0.02	0.0140
0.72	0.01	0.01	0.0060
1.25	0.02	0.01	0.0130
1.99	0.03	0.02	0.0180
2.27	0.03	0.02	0.0240
3.66	0.05	0.04	0.0380
6.4	0.08	0.06	0.0660
6.25	0.07	0.06	0.0640
7.15	0.07	0.07	0.0730
6.43	0.06	0.06	0.0650
6.54	0.06	0.07	0.0660
5.77	0.05	0.06	0.0570
5.22	0.04	0.05	0.0520
7.28	0.06	0.07	0.0730
3.88	0.03	0.04	0.0380
6.23	0.05	0.06	0.0610
6.16	0.04	0.06	0.0600
5.12	0.04	0.05	0.0500
4.63	0.03	0.05	0.0450
2.63	0.02	0.03	0.0260
1.47	0.01	0.02	0.0140
0.79	0.01	0.01	0.0080
0.42	0.00	0.00	0.0040
0.17	0.00	0.00	0.0020
0.06	0.00	0.00	0.0010
0.04	0.00	0.00	0.0000
0.02	0.00	0.00	0.0000
0.02	0.00	0.00	0.0000
0	0.00	0.00	0.0000
0	0.00	0.00	0.0000
0	0.00	0.00	0.0000
0	0.00	0.00	0.0000
0	0.00	0.00	0.0000
0	0.00	0.00	0.0000
0	0.00	0.00	0.0000
0	0.00	0.00	0.0000
0	0.00	0.00	0.0000

% Identified Peaks	13.24
Specific Gravity	0.813
API Gravity	42.6
,	

14.26
0.838
37.4

Table 1 - Thermal desorption of samples 11221 and 11222 analyzed andquantified using thermal desorption-gas chromatography.

	13256		1820.53 m	
ERCB Various Wells	Normalized	Mol Fraction	Mass	Volume
	Area %		Fraction	Fraction
Cyclopentane	0.18	0.01	0.00	0.0020
C6	0.15	0.00	0.00	0.0020
Methylcyclopentane	0.17	0.00	0.00	0.0020
Benzene	0.02	0.00	0.00	0.0000
Cyclohexane	0.38	0.01	0.00	0.0040
C7	0.19	0.00	0.00	0.0020
Methylcyclohexane	0.02	0.00	0.00	0.0000
Toluene	0.37	0.01	0.00	0.0030
C8	0.55	0.01	0.01	0.0060
Ethylbenzene	0.35	0.01	0.00	0.0030
m,p-Xylene	0.75	0.01	0.01	0.0070
o-Xylene	0.37	0.01	0.00	0.0030
C9	0.68	0.01	0.01	0.0070
Trimethylbenzene	0.79	0.01	0.01	0.0070
C10	1.51	0.02	0.02	0.0160
C11	3.61	0.05	0.04	0.0370
C12	8.7	0.10	0.09	0.0890
C13	16.39	0.17	0.16	0.1660
C14	21.67	0.21	0.22	0.2180
C15	18.73	0.17	0.19	0.1860
C16	10.45	0.09	0.11	0.1040
C17	4.8	0.04	0.05	0.0470
Pristane	2.92	0.02	0.03	0.0290
C18	2.01	0.02	0.02	0.0200
Phytane	1.03	0.01	0.01	0.0100
C19	0.99	0.01	0.01	0.0100
C20	0.7	0.01	0.01	0.0070
C21	0.51	0.00	0.01	0.0050
C22	0.33	0.00	0.00	0.0030
C23	0.18	0.00	0.00	0.0020
C24	0.08	0.00	0.00	0.0010
C25	0.07	0.00	0.00	0.0010
C26	0.05	0.00	0.00	0.0000
C27	0	0.00	0.00	0.0000
C28	0.31	0.00	0.00	0.0030
C29	0	0.00	0.00	0.0000
C30	0	0.00	0.00	0.0000
C31	0.01	0.00	0.00	0.0000
C32	0	0.00	0.00	0.0000
C33	0	0.00	0.00	0.0000
C34	0	0.00	0.00	0.0000
C35	0	0.00	0.00	0.0000
C36	0	0.00	0.00	0.0000
C37	0	0.00	0.00	0.0000
C38	0	0.00	0.00	0.0000
C39	0	0.00	0.00	0.0000
C40	0	0.00	0.00	0.0000

Table 2 - Thermal desorption of samples 13256 and 13285 analyzed andquantified using thermal desorption-gas chromatography.

13285		1611.55 m			
Normalized Area %	Mol Fraction	Mass Fraction	Volume Fraction		
0.28	0.01	0.00	0.0030		
0.63	0.01	0.01	0.0070		
0.68	0.01	0.01	0.0070		
0.21	0.00	0.00	0.0020		
4.27	0.08	0.04	0.0430		
0.17	0.00	0.00	0.0020		
0.49	0.01	0.01	0.0050		
1.02	0.02	0.01	0.0090		
3.15	0.05	0.03	0.0350		
1.71	0.03	0.02	0.0150		
6.31	0.10	0.06	0.0570		
2.9	0.05	0.03	0.0260		
2.15	0.03	0.02	0.0230		
3.63	0.05	0.04	0.0320		
2.76	0.03	0.03	0.0300		
4.11	0.04	0.04	0.0430		
5.83	0.06	0.06	0.0600		
6.3	0.06	0.06	0.0650		
9.43	0.08	0.09	0.0960		
10.42	0.08	0.10	0.1050		
7.01	0.05	0.07	0.0710		
4.51	0.03	0.05	0.0450		
5.2	0.03	0.05	0.0520		
4.66	0.03	0.05	0.0470		
1.85	0.01	0.02	0.0180		
1.97	0.01	0.02	0.0190		
2.21	0.01	0.02	0.0220		
1.98	0.01	0.02	0.0190		
1.39	0.01	0.01	0.0140		
1.08	0.01	0.01	0.0110		
0.52	0.00	0.01	0.0050		
0.62	0.00	0.01	0.0060		
0.22	0.00	0.00	0.0020		
0.09	0.00	0.00	0.0010		
0.03	0.00	0.00	0.0000		
0.15	0.00	0.00	0.0010		
0.02	0.00	0.00	0.0000		
0.03	0.00	0.00	0.0000		
0	0.00	0.00	0.0000		
0	0.00	0.00	0.0000		
0	0.00	0.00	0.0000		
0	0.00	0.00	0.0000		
0	0.00	0.00	0.0000		
0	0.00	0.00	0.0000		
0	0.00	0.00	0.0000		
0	0.00	0.00	0.0000		
0	0.00	0.00	0.0000		

25.37
0.831
38.7

12.89	
0.827	
39.6	

	13807		666.00 m				
ERCB Various Wells	Normalized	Mol Fraction	Mass	Volume			
	Area %	wior Fraction	Fraction	Fraction			
Cyclopentane	1.19	0.02	0.01	0.0130			
C6	0.74	0.01	0.01	0.0090			
Methylcyclopentane	1.2	0.02	0.01	0.0130			
Benzene	0.25	0.00	0.00	0.0020			
Cyclohexane	2.96	0.05	0.03	0.0300			
C7	0.93	0.01	0.01	0.0110			
Methylcyclohexane	0.13	0.00	0.00	0.0010			
Toluene	7.92	0.12	0.08	0.0730			
C8	2.18	0.03	0.02	0.0250			
Ethylbenzene	3.33	0.04	0.03	0.0310			
m,p-Xylene	13.51	0.17	0.14	0.1250			
o-Xylene	5.38	0.07	0.05	0.0490			
C9	2.29	0.02	0.02	0.0250			
Trimethylbenzene	6.41	0.07	0.06	0.0580			
C10	4.37	0.04	0.04	0.0480			
C11	4.52	0.04	0.05	0.0480			
C12	7.53	0.06	0.08	0.0790			
C13	6.73	0.05	0.07	0.0700			
C14	7.67	0.05	0.08	0.0800			
C15	5.52	0.04	0.06	0.0570			
C16	3.37	0.02	0.03	0.0350			
C17	1.89	0.01	0.02	0.0190			
Pristane	1.73	0.01	0.02	0.0180			
C18	1.68	0.01	0.02	0.0170			
Phytane	1.43	0.01	0.01	0.0140			
C19	1.08	0.01	0.01	0.0110			
C20	1.19	0.01	0.01	0.0120			
C21	1.44	0.01	0.01	0.0140			
C22	0	0.00	0.00	0.0000			
C23	0.38	0.00	0.00	0.0040			
C24	0.56	0.00	0.01	0.0060			
C25	0.12	0.00	0.00	0.0010			
C26	0.32	0.00	0.00	0.0030			
C27	0.02	0.00	0.00	0.0000			
C28	0.02	0.00	0.00	0.0000			
C29	0.02	0.00	0.00	0.0000			
C30	0	0.00	0.00	0.0000			
C31	0	0.00	0.00	0.0000			
C32	0	0.00	0.00	0.0000			
C33	0	0.00	0.00	0.0000			
C34	0	0.00	0.00	0.0000			
C35	0	0.00	0.00	0.0000			
C36	0	0.00	0.00	0.0000			
C37	0	0.00	0.00	0.0000			
C38	0	0.00	0.00	0.0000			
C39	0	0.00	0.00	0.0000			
C40	0	0.00	0.00	0.0000			

Table 3 - Thermal desorption of samples 13807 and 13826 analyzed and

quantified using thermal desorption-gas chromatography.

Normalized Area % Mol Fraction Mass Fraction Volu Fraction 0.4 0.01 0.00 0.00 0.18 0.00 0.00 0.00 0.13 0.00 0.00 0.00	ume tion 0.0040 0.0020 0.0010 0.0010 0.0020 0.0000
0.4 0.01 0.00 0.18 0.00 0.00 0.13 0.00 0.00 0.06 0.00 0.00	0.0040 0.0020 0.0010 0.0010 0.0020
0.18 0.00 0.00 0.13 0.00 0.00 0.06 0.00 0.00	0.0020 0.0010 0.0010 0.0020
0.13 0.00 0.00 0.06 0.00 0.00	0.0010 0.0010 0.0020
0.06 0.00 0.00	0.0010
	0.0020
0.24 0.01 0.00	0 0000
0.01 0.00 0.00	0.0000
0.01 0.00 0.00	0.0000
0.94 0.02 0.01	0.0090
0.71 0.01 0.01	0.0080
1.22 0.02 0.01	0.0110
4.45 0.08 0.05	0.0410
2.33 0.04 0.02	0.0210
1.56 0.02 0.02	0.0170
6.45 0.11 0.06	0.0580
2.07 0.03 0.02	0.0220
3.81 0.05 0.04	0.0400
5.59 0.07 0.06	0.0590
4.96 0.05 0.05	0.0520
4.61 0.05 0.05	0.0480
4.08 0.04 0.04	0.0420
3.07 0.03 0.03	0.0310
4.02 0.03 0.04	0.0410
3.9 0.03 0.04	0.0390
4.55 0.04 0.05	0.0460
4.7 0.03 0.05	0.0470
2.4 0.02 0.02	0.0240
3.01 0.02 0.03	0.0300
4.35 0.03 0.04	0.0430
4.59 0.03 0.05	0.0450
3.44 0.02 0.03	0.0350
2.8 0.02 0.03	0.0280
2.85 0.02 0.03	0.0280
2.92 0.02 0.03	0.0290
2.03 0.01 0.02	0.0200
1.86 0.01 0.02	0.0180
1.61 0.01 0.02	0.0160
0.71 0.00 0.01	0.0070
1.66 0.01 0.02	0.0170
0.81 0.00 0.01	0.0080
0.34 0.00 0.00	0.0030
0.34 0.00 0.00	0.0030
0.19 0.00 0.00	0.0020
0.05 0.00 0.00	0.0000
0.01 0.00 0.00	0.0000
0.01 0.00 0.00	0.0000
0.01 0.00 0.00	0.0000
0 0.00 0.00	0.0000

% Identified Peaks	14.76
Specific Gravity	0.822
API Gravity	40.6

11.35
0.860
33.1

Table 4 – Simulated distillation of samples 11221, 11222, and 13256 analyzed and quantified using thermal desorption-gas chromatography.

	11221 732.80 m]	11222 736.40 m			13256 1820.53 m		
ERCB Various Wells	Temperature (°C)	Carbon Number		Temperature (℃)	Carbon Number		Temperature (℃)	Carbor Numbe	
0.5%	58	C6		62	C6		70	C6	
5.0%	75	C6		105	C7		165	C10	
10.0%	123	C8		163	C10		199	C11	
15.0%	160	C9		192	C11		216	C12	
20.0%	182	C10		212	C12		227	C13	
25.0%	198	C11		226	C13		235	C13	
30.0%	211	C12		237	C13		238	C13	
35.0%	219	C12		247	C14		245	C14	
40.0%	228	C13		256	C14		250	C14	
45.0%	235	C13		265	C15		253	C14	
50.0%	242	C13		276	C15		257	C14	
55.0%	250	C14		287	C16		262	C15	
60.0%	258	C14		298	C17		267	C15	
65.0%	268	C15		309	C17		270	C15	
70.0%	282	C16		317	C18		276	C15	
75.0%	303	C17		329	C19		283	C16	
80.0%	330	C19	1	340	C20		289	C16	
85.0%	345	C20	1	353	C21		301	C17	
90.0%	369	C22	1	368	C22		315	C18	
95.0%	432	C28	1	386	C24		348	C20	
99.5%	523	C40	1	508	C38		484	C34	

Table 5 – Simulated distillation of samples 13285, 13807, and 13826 analyzed and quantified using thermal desorption-gas chromatography.

	13285 1611.55 m		1	13807 666.00 m			13826 1086.50 m		
ERCB Various Wells	Temperature (°C)	Carbon Number		Temperature (°C)	Carbon Number		Temperature (°C)	Carbon Number	
0.5%	60	C6		61	C6		74	C6	
5.0%	83	C6		85	C7		160	C9	
10.0%	119	C8		123	C8		187	C11	
15.0%	150	C9		147	C9		208	C12	
20.0%	180	C10		169	C10		223	C12	
25.0%	205	C11		185	C10		236	C13	
30.0%	222	C12		200	C11		250	C14	
35.0%	236	C13		213	C12		262	C15	
40.0%	246	C14		222	C12		277	C15	
45.0%	254	C14		231	C13		291	C16	
50.0%	261	C14		239	C13		307	C17	
55.0%	269	C15		247	C14		321	C18	
60.0%	276	C15		255	C14		335	C19	
65.0%	283	C16		264	C15		350	C20	
70.0%	292	C16		275	C15		363	C21	
75.0%	303	C17		289	C16		375	C23	
80.0%	315	C18		308	C17		390	C24	
85.0%	330	C19		330	C19		409	C26	
90.0%	353	C21		353	C21		430	C28	
95.0%	379	C23		383	C23		454	C31	
99.5%	485	C34		506	C38		511	C38	

CONCLUSIONS

Thermal desorption of six core samples from various wells were determined and quantified using Agilent ChemStation and Agilent SimDis. Hydrocarbon paraffins, aromatics and napthenes were detected and quantified. Analyzed samples are mainly dominated by C6-C40 straight chained alkane hydrocarbons, aromatic hydrocarbons, and napthenes. Initial and final boiling points were determined using simulated distillation methods.

Sample 11221 of the Viking Formation was found to be dominated by heavy condensates (47%) with significant light condensate content (36%). The IBP was determined to be 58°C with a carbon number of C6. The FBP was determined to be 523°C with a carbon number of C40. Hydrocarbon rich zones were identified in the range of C6 to C16 and a modal peak of C13. Aromatic hydrocarbons were identified, dominated by ethylbenzene and xylenes (2-4%). Napthene hydrocarbons were identified with cyclohexane most predominant (3%). The calculated API gravity of this sample is 42.6°API.

Sample 11222 of the Westgate Formation showed a larger presence of heavy condensates (67%) than light condensates (16%). The IBP was determined as 62° C with a carbon number of C6, and a FBP of 508°C with a carbon number of C38. Hydrocarbon rich zones were identified in the range of C10 to C23 and a modal peak of C14. Aromatics were present (5%), composed of compounds that ranged from <1% to 1.5%. Napthenes were present (2%), with each component <1%. The calculated API gravity of this sample is 37.4°API.

Sample 13256 from the Cardium Formation was determined to have a greater amount of heavy condensates (77%) than light condensates (15%). The IBP was determined to be 70°C with a carbon number of C6, and a FBP of 484°C with a carbon number of C34. The hydrocarbon rich zone ranged from C11 to C16 with a modal peak of C14. There were some aromatics present (3%) and <1% of napthene content. The calculated API gravity of this sample is 38.7° API

The analyzed sample 13285 from the Cardium Formation was found to be dominated by heavy condensates (53%), with significant light condensates (19%). The IBP was determined to be 60°C with a carbon number of C6, and a FBP of 485°C with a carbon number of C34. The hydrocarbon rich zone ranges from C6 to C20. Also present in the sample are aromatics (16%), which are predominantly made up of toluene, ethylbenzene and xylenes in this sample. The naphthalene component (6%) is dominated by cyclohexane. The calculated API gravity of this sample is 39.6°API.

Sample 13807 from the Wilrich Formation showed a large component of aromatics (37%), with lesser amounts of heavy condensates (32%) and light condensates (23%). Napthenes were present as a minor component (5%). The IBP was determined as 61°C with a carbon number of C6, with a FBP of 506°C and a carbon number of C38. The hydrocarbon rich zone ranged from C7 to C16 with a modal peak of C8. The calculated API gravity of this sample is 40.6° API.

From the Exshaw Formation, sample 13826 was analyzed and yielded a large heavy condensate (61%) component with a lesser light condensate portion (14%). There was a significant aromatic portion (15%), composed primarily of xylenes. The IBP was determined to be 74°C with a carbon number of C6, and a FBP of 511°C with a carbon number of C38. The hydrocarbon rich zone ranged from C8 to C27 with a modal peak of C9. The calculated API gravity of this sample is 33.1°API.

Comparison of sample results from this project yielded no obvious trends in hydrocarbon content, peak indicators, or simulated distillation results.

Principal Authors:

R. Marc Bustin, PhD, P.Geo, FRSC Technical Advisor *Trican Geological Solutions*

Ron Brezovski, P.Geol President *Trican Geological Solutions*

Brent Nassichuk, MSc Technical Manager Trican Geological Solutions

Cory Twemlow, BSc, P.Chem Lab Manager *Trican Geological Solutions*

Trican Geological Solutions

APPENDIX A: ANALYSIS, METHODS AND OUTPUTS

Methods and sample details

An Agilent gas chromatograph equipped with a thermal inlet is used to separate and quantify the components of a solid or liquid sample. Samples are introduced to the thermal inlet using an automatic gripper arm where they are thermally desorbed. Volatilized hydrocarbons are separated using an Agilent chromatography column, which has a temperature rating of 325° C, a length of 30m, a diameter of $320 \,\mu$ m, and a bore size of 0.25 μ m. The column is composed of a silicate coating, allowing for separation of components based on physical properties.

The detector used by the Agilent is a Flame Ionization Detector or FID. The FID will combust the separated compounds, giving them a charge. These charged particles will then collide with the detector and lose their charge. The FID responds to this change in charge and graphs the results with time on the X axis and response on the Y axis, allowing us to see 'peaks' in response which relate to concentration.

Before any unknown samples were analyzed, rigorous calibration standards were run and identified at various concentrations. Inlet and oven parameters were adjusted and then set based on the calibration standards. The parameters have been designed so that each component elutes out independently allowing individual components to be easily distinguished. The calibrations and inlet and oven parameters are applied to the unknown samples to identify and quantify each hydrocarbon component. The conditions are applied such that direct comparison can be made to S1 values from the source rock analysis (SRA).

There are two sample forms the Agilent TD-GC can analyse:

Solid – Powdered method

The sample material used for solid thermal desorption is ground to a homogenous particle size of ~ 2 micrometres using a puck and ring mill. The sample is loaded into a deactivated glass GC inlet liner that is placed in a sample holder tray. The liner with sample will be introduced to the thermal inlet by means of an automatic gripper arm.

Liquid method

The sample material used for liquid thermal desorption is either a concentrated liquid sample (e.g. invert) or liquid sample that has been extracted by Dean Stark from a rock sample. The sample is then placed in a 2ml glass vial with a PTFE cap. The sample will be introduced to the thermal inlet by means of an automatic direct syringe injection.

TD-GC Peak Patterns - Explained

Figure 1 shows the raw gas chromatogram of a hydrocarbon rich sample. The figure illustrates peak retention times and relative abundance of the major hydrocarbons. The sample in **Figure 1** shows that straight chained hydrocarbons (alkanes) make up a large component of the sample, while the aromatic hydrocarbons and napthenes make up a relatively small component of the overall composition. It must be noted that not all peaks can be identified as standards are not available for minor compounds. Simulated Distillation must be applied to further resolve the H-C groupings based on boiling points. Quantification may not reflect the true percentage of these hydrocarbon concentrations but a relative or normalized percentage.

Figure 1: An example of a gas chromatogram of sample 11222 displaying typical hydrocarbons identified in these samples. Aromatic hydrocarbons (benzene, ethylbenzene, toluene, trimethylbenzene, and o,m,p-xylenes), paraffins (alkanes) and napthenes are present.

APPENDIX B: MOLE, MASS AND VOLUME FRACTION PLOTS

*Note that mole, mass and volume fractions have been normalized and assume a total hydrocarbon recovery from the gas chromatography.

11222 - 736.40m

13256 - 1820.53m

13285 - 1611.55m

13807 - 666.00m

13826 - 1086.50m

APPENDIX C: SIMULATED DISTILLATION %YIELD PLOTS

11221 - 732.80m

13285 – 1611.55m

13807 - 666.00m

13826 -1086.50m

REFERENCES

"Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography." American Society for Testing and Materials D2887-08 (2008).

Wang, ChunXiao. "Simulated Distillation System for ASTM D2887, Based on the Agilent 6890N GC." Agilent Technologies Inc. (2005).

Wang, ChunXiao. "High-Temperature Simulated Distillation System Based on the 6890N GC.' Agilent Technologies Inc. (2005).

Villalanti, Dan C., Joesph C. Raia, and Jim B. Maynard. "High-Temperature Simulated Distillation Applications in Petroleum Characterization." Encyclopedia of Analytical Chemistry (2000): 6726-741.