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Uncertainty Analysis in Geological Surface Modelling
(Duvernay Formation / Muskwa Formation and Leduc Formation Case Studies)
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Generate random subset 
realizations of the reference 

pick dataset in Python

Local 
Uncertainty

Import the subset 
realizations into Petrel and 

run the workflow

Optimal 
parameters:10 

subset realizations, 
80% of reference 

pick dataset 

Find the nearest 4 
estimated grid points 

around each pick 
(observed value)

Calculate the average of 
these 4 grid points to get 

the approximate estimation 
at the pick location

Calculated the error 
based on the observed 
and estimated values

How the Matlab 
code works:

Calculate the RMSE and 
export results

Generate surfaces for each 
subset realizations and 

convert the surfaces to grid 
points

Combine the elevation 
values of multiple 

realizations into one file 
and export them to Matlab

Run the Matlab code to 
calculate the standard 

deviation at each grid node 
location for all realizations 

How the workflow 
code works:

Export the results to 
Petrel to generate the 

uncertainty map

Compile stratigraphic picks for all 
formations and corresponding 

surfaces in Petrel

Global 
Uncertainty

Convert the surface to 
points and export the file 

from Petrel

Import the grid points and 
pick dataset to Matlab and 

run the RMSE code

Introduction
 In geological surface modelling, uncertainty analysis is used to provide information about the reliability of 
the three-dimensional (3D) geological model. The uncertainty analysis of interpolated surfaces can be 
calculated by the estimation error, which is the difference between the estimated values in the interpolated 
surface and the reference dataset. Geostatistical tools are used to assess the uncertainty related to how 
closely the interpolated surface honours the geological dataset.
 Most geological surfaces, within the 3D models developed at the Alberta Geological Survey (Figure 1) 
are modelled using Petrel’s convergent interpolation algorithm because it typically produces a more realistic 
representation in areas of complex geology compared to algorithms in other software. Unfortunately, it is 
difficult to assess the uncertainty for these surfaces using the current surface modelling methodologies in 
Petrel. 
 To solve this problem, a unique workflow for assessing prediction uncertainty was developed using a 
combination of Python, Matlab code, and Petrel software. Two separate workflow methodologies have been 
developed to assess both the global and local uncertainty of our geological surfaces (Figure 4).

Figure 1: 3D Provincial Geological Framework Model of Alberta, Version 2 (3D PGF model v2). 

Detect and Manage Uncertainty 
 There are different sources of uncertainty that 
can affect the surface modelling and cause higher 
uncertainty. Uncertainty analysis methodologies 
can improve surface modelling by helping find the 
sources of uncertainty and guiding approaches to 
reduce it (Figures 2 and 3).

1 - Data Quality
- Extremely high and low values (outliers) 
- Managing the outliers may decrease the 
uncertainty 
   
2 - Data Density
- Lack of data / sparse data of the stratigraphic 
picks
- More data can reduce the uncertainty in these 
areas

3 - Geostatistical Model Parameters
- Poor choice of geostatistical parameters
- Selection of appropriate estimation methods 
parameters

4 - Geological Complexity
- Areas of high geological complexity or structure   
- A significant and unavoidable cause of high 
uncertainty   

Figure 2: Precambrian top  
picks data and modelled 
surface. 

Figure 3: Precambrian top 
surface uncertainty map.

Local and Global Uncertainty Implementations 
Global Uncertainty:

- Summarizes the estimation errors at the data locations with a single value 
and does not have enough extra information about other locations.

- Root-mean-square-error (RMSE) value is a measure of evaluating the global 
uncertainty.

-  z1 ,z2 , ..., zn  observed values in n locations
-  ẑ1 , ẑ2 , ..., ẑn corresponding estimated values

Case Studies: Duvernay Formation / Muskwa Formation and Leduc Formation 

Conclusions and Future Work

Figure 6: Duvernay Formation / Muskwa Formation top picks and modelled zone.

Figure 8: Leduc Formation top picks and modelled zone. 

Figure 7: Duvernay Formation / Muskwa Formation top surface uncertainty map. 

Figure 9: Leduc Formation top surface uncertainty map.

RMSE = 9.55

RMSE = 2.27

Conclusions:

     - Global and local uncertainty workflow shows higher uncertainty on surfaces with low density dataset and more complex geological structures. 
     - Uncertainty map represents the more uncertain areas by mapping higher standard deviation values resulting from the presented workflow. 
     - The code developed for this methodology is software independent and can be applied to other modelled surfaces (Babakhani, work in progress) 

Future Work:

     - Variability of quality within a pick dataset is not considered as a variable in assessing the uncertainty in this workflow and will be assessed in further studies.
     - The optimal N and P values presented here are stable in these case studies. For other studies with different sources of uncertainty, a reassessment of the optimization values is needed. 

Local Uncertainty: 

- Identifies the areas of high and low uncertainty in the modelled surface by 
standard deviation uncertainty maps.

- Local uncertainty gives more information about the locations with higher 
estimation error.

- Uncertainty map based on standard deviation provides graphical representations 
of estimation error on locations with no data (Figure 3). 

Implementation:

 This methodology of assessing the RMSE and standard deviation uncertainty 
maps (Figure 4) has been applied to:

- 28 geological pick datasets from the Alberta Geological Survey’s 3D Provincial 
Geological Framework Model of Alberta V.1 (Branscombe et al., 2018 a, b).

- 47 geological pick datasets from the Alberta Geological Survey’s 3D Provincial 
Geological Framework Model of Alberta V.2 (AGS, work in progress).

Figure 4: Implementation of local and global uncertainty.

Sensitivity Analysis: 

 A sensitivity analysis was applied to the Duvernay Formation / Muskwa Formation pick dataset to 
come up with the optimal parameters for the number of realizations (N) and the percentage of the 
data taken from the reference pick dataset (P). 

- The standard deviation maps were calculated on three P and five N values (Figure 5):  
  P = 50%, 70%, 80%
  N = 5, 7, 10, 15, 20, 25

- Uncertainty map values were calculated for each combination of P and N values. The objective of 
this study was to figure out where the average and variance of uncertainty are stabilizing. 

- At P = 50% the average of uncertainty is increasing as the N value increases and stabilizes after 
10 to 15 realizations (Figure 5-A1). The variance of uncertainty slightly decreases with increasing N 
values (Figure 5-A2). 

- At P = 70% the average of uncertainty is increasing, has a significant increase at the10th realization 
and stabilizes after that (Figure 5-B1). The variance of uncertainty slightly decreases at first, then 
has a significant increase at the10th realization, stabilizes, and then decreases (Figure 5-B2). 

- At P = 80% the average of uncertainty is increasing as the N value increases and stabilizes after 
10 to 15 realizations (Figure 5-C1). The variance of uncertainty decreases with increasing N values 
and stabilizes after 10 to 15 realizations (Figure 5-C2). 

- For each P value, the average and variance of uncertainty values are optimized stabilizes after 10 
to 15 realizations and no additional realizations are necessary. 

- P = 80% is the optimal value as this percentage introduces some uncertainty which stabilizes after 
10 to 15 realizations. Indeed for P = 50% and P = 70%, the variance of uncertainty values is either 
high for all N values or does not stabilize. 

Figure 5: Average and variance of uncertainty values based on different subset values of various 
percentages taken from the reference dataset. 

Two case studies: 

- Duvernay Formation / Muskwa Formation zone from 3D PGF model v2 (Figure 6) and standard deviation uncertainty map P = 80% and N = 10 (Figure 7).

- Leduc Formation zone from 3D PGF model v2 (Figure 8) and standard deviation uncertainty map, P = 80% and N = 10 (Figure 9).
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