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In geological surface modelling, uncertainty analysis is used to provide information about the reliability of Global Uncertainty: _ _ _ Two case studies:
. . . . . . Figure 4: Implementation of local and global uncertainty.
the three-dimensional (3D) geological model. The uncertainty analysis of interpolated surfaces can be
calculated by the estimation error, which is the difference between the estimated values in the interpolated
surface and the reference dataset. Geostatistical tools are used to assess the uncertainty related to how
closely the interpolated surface honours the geological dataset.

- Summarizes the estimation errors at the data locations with a single value
and does not have enough extra information about other locations.

- Duvernay Formation / Muskwa Formation zone from 3D PGF model v2 (Figure 6) and standard deviation uncertainty map P = 80% and N = 10 (Figure 7).

- Leduc Formation zone from 3D PGF model v2 (Figure 8) and standard deviation uncertainty map, P = 80% and N = 10 (Figure 9).

- Root-mean-square-error (RMSE) value is a measure of evaluating the global

Most geological surfaces, within the 3D models developed at the Alberta Geological Survey (Figure 1) uncertainty Figure 6: Duvernay Formation / Muskwa Formation top picks and modelled zone. Figure 7: Duvernay Formation / Muskwa Formation top surface uncertainty map.
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surface uncertainty map. = ww Branscombe, P., MacCormack, K.E., Corlett, H., Hathway, B., Hauck, T.E. and Peterson, J.T. (2018 b): 3D Provincial Geological Framework Model of Alberta, Version 1 (dataset, multiple files); Alberta Energy Regulator, AER/AGS Model 2017-03.




