AER/AGS Open File Report 2020-06

New Evidence for Cretaceous Depositional Changes in the Alberta Foreland Basin Triggered by Tectonism in the Southern Canadian Rocky Mountains

New Evidence for Cretaceous Depositional Changes in the Alberta Foreland Basin Triggered by Tectonism in the Southern Canadian Rocky Mountains

D.I. Pană¹ and P.E. Smith²

¹Alberta Energy Regulator Alberta Geological Survey

²TerraChron Corp.

March 2021

©Her Majesty the Queen in Right of Alberta, 2021 ISBN 978-1-4601-4929-4

The Alberta Energy Regulator / Alberta Geological Survey (AER/AGS), its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness or reliability of this publication. Any references to proprietary software and/or any use of proprietary data formats do not constitute endorsement by AER/AGS of any manufacturer's product.

If you use information from this publication in other publications or presentations, please acknowledge the AER/AGS. We recommend the following reference format:

Pană, D.I. and Smith, P.E. (2021): New evidence for Cretaceous depositional changes in the Alberta foreland basin triggered by tectonism in the Southern Canadian Rocky Mountains; Alberta Energy Regulator / Alberta Geological Survey, AER/AGS Open File Report 2020-06, 121 p.

Publications in this series have undergone only limited review and are released essentially as submitted by the author.

Author address:

P.E. Smith
TerraChron Corp.
University of Toronto
Suite 331
60 St. George Street
Toronto, ON M5S 1A7
Canada
Tel: 416.978.2947
Email: psmith@physics.utoronto.ca

Published March 2021 by:

Alberta Energy Regulator Alberta Geological Survey 4th Floor, Twin Atria Building 4999 – 98th Avenue Edmonton, AB T6B 2X3 Canada

 Tel:
 780.638.4491

 Fax:
 780.422.1459

 Email:
 AGS-Info@aer.ca

 Website:
 www.ags.aer.ca

Contents

Ac	knowledgements	vi
At	ostract	.vii
1	Introduction	1
2	Regional Geology	1
3	Geology of the Investigated Western Margin of the Rocky Mountains	4
4	Previous Geochronological Data	7
	4.1 Rocky Mountains	7
	4.2 Western Margin of the Rockies and the Southern Rocky Mountain Trench	7
5	New Samples	9
6	Analytical Technique	9
7	Analytical Results	. 11
	7.1 Foothills, Front and Main Ranges of the Rocky Mountains	13
	7.1.1 Burnt Timber Thrust	13
	7.1.2 Striated Brazeau Sandstone	13
	7.1.3 McConnell Thrust	13
	7.1.4 Miette Group Detrital Muscovite	. 15
	7.1.5 Monarch Thrust	. 15
	7.1.6 Moose Pass Thrust	. 18
	7.2 Western Rockies	. 18
	7.2.1 Walker Creek Fault Zone	. 18
	7.2.2 Bear Foot Thrust and the Valemount Strain Zone	20
	7.2.3 Shear Zone within the Northern Segment of the Southern Rocky Mountain Trench	24
8	Regional Correlations	35
	8.1.1 Pre-Jurassic Ages	38
	8.1.2 Jurassic Tectonism	39
	8.1.3 Early Cretaceous–Early Eocene Tectonism	40
	8.1.4 Exhumation of the Selkirk-Monashee-Cariboo Metamorphic Complex	43
9	Summary and Conclusions	44
10	References	47
Ap	pendix 1 – Field Photos	56
•	Walker Creek Fault Zone	57
	Southern Rocky Mountain Trench.	59
	Valemount Strain Zone	65
Ar	pendix 2 – Micrographs	68
Ap	\hat{p} pendix $3 - {}^{40}\text{Ar}/{}^{39}\text{Ar}$ Raw Data	72
	-	

Tables

Table 1. Summary of previous K-Ar and ⁴⁰ Ar/ ³⁹ Ar ages in the investigated region	8
Table 2. ⁴⁰ Ar/ ³⁹ Ar sample locations and their stratigraphic and structural context	10
Table 3. Summary of ⁴⁰ Ar/ ³⁹ Ar analytical results.	12
Table 4. Total-fusion ages and Ca/K ratios for garnet crystals from sample 19	27
Table 5. Summary of age intervals obtained from phyllonite samples from the three zones of strain	
concentration at the western margin of the Rocky Mountain fold-and-thrust belt	36
Table 6. Samples analyzed by GeochronEx Analytical Services Ltd.	73
Table 7. Samples analyzed by TerraChron Corp.	78

Figures

Figure 1. I	Location of the investigated areas relative to the Rocky Mountain Trench in the Canadian
	Cordillera2
Figure 2. S	Sample location map of the Rocky Mountain fold-and thrust-belt
Figure 3. S	Sample location map of the northern segment of the Southern Rocky Mountain Trench area
	between Walker Creek and northern Kinbasket Lake
Figure 4. ⁴	⁰ Ar/ ³⁹ Ar age and apparent K/Ca spectra for thrust faults in the Foothills and Main Ranges of the
	Rocky Mountain fold-and-thrust belt14
Figure 5. ⁴	⁰ Ar/ ³⁹ Ar age and apparent K/Ca spectra for detrital mica in the Miette Group
Figure 6. ³	⁹ Ar/ ⁴⁰ Ar, Ca/K spectra, and the argon correlation diagrams for a biotite grain (a) and a whole
	rock sample (b) collected from poorly recrystallized phyllonite of the Monarch thrust just
	south of Highway 16, west of the town of Jasper 17
Figure 7. ⁴	⁰ Ar/ ³⁹ Ar age and apparent K/Ca spectra for poorly recrystallized phyllonite from the Moose
	Pass thrust fault
Figure 8. ⁴	⁰ Ar/ ³⁹ Ar age and apparent K/Ca spectra for muscovite crystals from phyllite/phyllonite samples
	collected along Walker Creek fault zone
Figure 9. ⁴	⁰ Ar/ ³⁹ Ar age and apparent K/Ca spectra for muscovite crystals from phyllite/phyllonite samples
	collected along the Walker Creek fault zone
Figure 10.	⁴⁰ Ar/ ³⁹ Ar age and apparent K/Ca spectra for muscovite/sericite crystals from
	phyllite/phyllonite samples collected from the Valemount strain zone and the Bear Foot
	thrust
Figure 11.	⁴⁰ Ar/ ³⁹ Ar age and apparent K/Ca spectra for muscovite/sericite crystals from
	phyllite/phyllonite samples collected along the Valemount strain zone
Figure 12.	⁴⁰ Ar/ ³⁹ Ar age and apparent K/Ca spectra for muscovite crystals from phyllite/phyllonite
	samples collected along the Southern Rocky Mountain Trench north of McBride
Figure 13.	⁴⁰ Ar/ ⁵⁹ Ar age and apparent K/Ca spectra for muscovite and/or biotite or plagioclase crystals
	from phyllite/phyllonite samples collected along the Southern Rocky Mountain Trench near
	Tête Jaune Cache
Figure 14.	⁴⁰ Ar/ ⁵⁹ Ar age and apparent K/Ca spectra for muscovite/sericite, and K-feldspar crystals or
	whole rock chips from phyllite/phyllonite samples collected along the Southern Rocky
	Mountain Trench from Tête Jaune Cache to the northeast side of Kinbasket Lake
Figure 15.	Time-correlation of Cretaceous tectonic pulses in the Foreland belt with major depositional
	changes in the foreland basin
Figure 16.	Schematic representation of the main phases of Jurassic–Cretaceous tectonic evolution and
	detormation at the latitude of the Northern Monashee Mountains along the interface between
	the Foreland and Omineca belts, and the contemporaneous thrusting pulses in the Rocky
	Mountain fold-and-thrust belt

Acknowledgements

We thank Dean Rokosh, Chris Filewich, and Matt Grobe for critical review and editing of the original manuscript.

Abstract

A new set of muscovite, biotite, feldspar, and whole rock ⁴⁰Ar/³⁹Ar ages has been obtained from the Rocky Mountain fold-and-thrust belt (RM-FTB) and from its western margin along the northern segment of the Southern Rocky Mountain Trench (SRMT). Two phyllonite samples from the Monarch and Moose Pass thrusts in the Main Ranges of the Rockies yielded less well constrained ⁴⁰Ar/³⁹Ar ages of ca. 131 Ma (whole rock) and ca. 135 Ma (muscovite), respectively. The classical ⁴⁰Ar/³⁹Ar dating technique proved inefficient in providing age dates in poorly recrystallized fault rocks of the shallower thrusts in the Alberta Rockies to the east. Thus, the sheared rocks of the McConnell and Burnt Timber Creek thrust faults yielded erroneous dates (mixed between detrital and tectonic ages). A feldspar grain from a sheared and slickensided sandstone sample of the Brazeau Formation in front of the Brazeau thrust yielded a well constrained plateau age of 130 Ma, likely representing the source crystallization/cooling age. Deeper faults on the western margin of the Rocky Mountains are generally marked by phyllonite, more amenable to classical ⁴⁰Ar/³⁹Ar dating. Four sericite samples from the oblique compression Bear Foot thrust and the associated Valemount strain zone in its footwall yielded exclusively late Campanian-earliest Maastrichtian ages (ca. 73-71 Ma). One biotite sample from the eastern margin of this zone yielded a biotite plateau age of 87 Ma. Four samples from the strike-slip Walker Creek fault zone vielded Early Cretaceous (ca. 133-124 Ma), mid-Cretaceous (ca. 111-96 Ma), and weak Late Cretaceous (ca. 85-68 Ma) pulses. These fault zones merge with the northern segment of the SRMT. Nine 40 Ar/39 Ar ages from phyllite and phyllonite with conspicuous subhorizontal stretching lineation and steeply dipping foliation collected along 200 km of this segment, indicate two Early Cretaceous (ca. 135 and ca. 125 Ma), two mid-Cretaceous (ca. 115-111 Ma and ca. 101-96 Ma), and two Late Cretaceous (ca. 85 Ma and ca. 74–72 Ma) peaks of transpressional tectonism and define the Southern Rocky Mountain Trench shear zone (SRMTSZ).

The new structural and geochronological data from the Main Ranges and from the three, merging strikeand oblique-slip shear/fault zones at the western margin of the Rockies indicate protracted Cretaceous deformation, apparently as distinct pulses of mainly orogen-parallel tectonism. The tectonic pulses identified in this study are consistent with tectonothermal events previously reported from the eastern Omineca belt and document the kinematic link inferred, but not documented between the Foreland belt and its hinterland. More importantly, the tectonic pulses are contemporaneous with important depositional changes in the Alberta foreland basin. Thus, the Early Cretaceous phyllonite ages suggest a previously unrecognized out-of-sequence thrusting pulse in the western RM-FTB contemporaneous and kinematically linked to the initial transpression along the SRMTSZ. Valanginian ages of ca. 135-131 Ma may record a phase of tectonic loading of the North American margin accompanied by the development of a forebulge that corresponds to the extensive pre-Cadomin-pre-Mannville ("sub-Cretaceous") unconformity in the foreland basin. The early Aptian ages of 128-123 Ma may record the subsequent orogenic uplift accompanied and outlasted by vigorous erosion in the proto-Rockies and deposition of extensive Cadomin gravel sheets in the proximal portion of the foreland. The late Aptian-earliest Albian ages of 115–111 Ma are contemporaneous with the Moosebar sea transgression, which suggests a new phase of tectonic loading that triggered downwarping of the foreland basin floor (i.e., creation of accommodation space). The mid-Cretaceous tectonic pulse (101-96 Ma) is quasi-contemporaneous with the development of the Dunvegan fluvial system. Finally, the latest Cretaceous compressional pulses at the western margin of the Rockies (79–71 Ma)—best recorded by the Bear Foot thrust and the Valemount strain zone-are contemporaneous with major Campanian thrusting in the Front Ranges (tectonic loading), that triggered crustal down-warping accompanied by the last major transgression (Bearpaw sea) in the Alberta Basin.

1 Introduction

Stratigraphic sequences in the Mesozoic Alberta foreland basin have resulted from tectonic loading events (i.e., emplacement of thrust sheets) in the Rocky Mountains, triggered by terrane accretion and changes in plate boundary dynamics. Understanding the tectonic/structural evolution of the Rocky Mountain fold-and-thrust belt (RM-FTB), particularly the timing of the tectonic pulses is critical in defining the stratigraphic sequences and their rank in the Alberta foreland basin.

Radiometric ages from regionally distributed thrust-fault gouge collected in the Alberta portion of the RM-FTB have shown that the eastward propagation of the RM-FTB occurred in four orogenic pulses (Late Jurassic, mid-Cretaceous, Late Cretaceous, and late Paleocene-early Eocene) that correlate with tectonic events of the Cordilleran interior and with depositional patterns in the adjacent foreland (Pană and van der Pluijm, 2015). There are however, major depositional events (e.g., the extensive Aptian Cadomin gravel sheets) and long non-depositional periods (the "sub-Cretaceous" unconformity) in the Alberta Basin that are not yet directly related to contemporaneous Cordilleran tectonic events. It is reasonable to assume that the record of tectonic events corresponding to such depositional anomalies exist in the still untested western portion of the RM-FTB.

This report includes new results of ⁴⁰Ar/³⁹Ar dating on gouge and phyllonite collected from the RM-FTB. We have sampled a cataclastic silt from the shallow Burnt Timber Creek thrust and a striated Brazeau sandstone in front of the Brazeau thrust in the Foothills, and highly sheared shales in the immediate hanging wall of the McConnell thrust that marks the boundary between Foothills and Front Ranges of the Alberta Rockies. From the Main Ranges, west of the town of Jasper, we analyzed poorly recrystallized phyllonite samples from the Monarch and Moose Pass thrusts, two major thrusts that straddle the Alberta–British Columbia Border. In addition, we have collected and tested phyllonite samples from several tectonic discontinuities farther west: specifically, from the dextral oblique thrust known as the Bear Foot thrust and its immediate footwall (the "Valemount strain zone"); from phyllite and phyllonite samples collected along the northern 200 km stretch of the 600 km long Southern Rocky Mountain Trench (SRMT), between the Kinbasket Lake (52°42'N), and Walker Creek (53°47'N), and lastly from the Walker Creek fault zone (McMechan, 2000), which is the kinematic link between the SRMT and the Northern Rocky Mountain Trench (NRMT) (Roddick, 1967; Price and Carmichael, 1986; Struik, 1993) (Figure 1).

Our structural and geochronological data indicate protracted tectonic activity, which started in the Early Cretaceous (ca. 135 Ma) as a kilometres-wide zone of orogen-parallel crustal yielding in the northern segment of the SRMTSZ and was kinematically linked to at least the Monarch and Moose Pass thrusts in the Main Ranges of the RM-FTB. This tectonic event may correspond to the "sub-Cretaceous" unconformity followed by the extensive deposition of gravel sheets of the late Early Cretaceous Cadomin Formation in the Alberta Basin. Over time, strike-slip strain gradually concentrated into narrower midand Late Cretaceous belts within the SRMTSZ and the adjacent Walker Creek fault zone and into the mainly Campanian Valemount dextral oblique compression strain zone. This event coincides with the emplacement of several major thrusts in the Front Ranges and with the westward transgression of the Bearpaw sea in the Alberta Basin.

2 Regional Geology

The RM-FTB in the eastern portion of the Canadian Cordilleran orogen stretches from 49°N (Canada–U.S. border) to 60°N latitude (Liard River) in western Canada and consists of overlapping thrust sheets and detached folds. To the west, the RM-FTB is bound by the Northern Rocky Mountain Trench (NRMT) in northeastern British Columbia and the Southern Rocky Mountain Trench (SRMT) from southeastern British Columbia into Montana. The two segments of the Trench form a continental scale physiographic feature consisting of a chain of valleys about 1600 km long by 5–15 km wide (inset in Figure 1).

Figure 1. Location of the investigated areas (black outlined areas) relative to the Rocky Mountain Trench in the Canadian Cordillera.

The eastern boundary of the RM-FTB in Alberta, from 49°N to the British Columbia border (Figure 2), is the elusive "eastern limit of Cordilleran deformation," arbitrarily traced east of the easternmost deformed strata known in outcrop and/or subsurface (Pană and Elgr, 2013).

The SRMT separates the RM-FTB to the east from the Omineca belt and the Purcell Anticlinorium (the latter is geologically part of the RM-FT; McMechan and Thompson, 1989; 1992) of the southern Canadian Cordillera to the west. Compressional deformation structures are dominant on either side of the Rocky Mountain Trench and record protracted interaction between North America and the Pacific oceanic lithosphere and its island arcs. The craton moved northwestward during 240–180 Ma, westerly between 180–160 Ma northward until ~140 Ma and then southwestward until present with an interval of westerly movement between 120–60 Ma (Monger and Gibson, 2019).

On the west side of the SRMT at the latitude of our study is the Omineca belt, the region of overlap between ancestral North America and, from east to west, pericratonic (marginal or "suspect" Kootenay), accreted oceanic (Slide Mountain), and fringing arc (Quesnellia-Stikinia) terranes. The imbrication and overthrust of terranes onto North America are inferred to have started during the Pliensbachian–Toarcian (ca. 187–173 Ma; Nixon et al., 1993; 1997; 2020; Murphy et al., 1995) and lasted into the early Eocene. Compressional tectonism resulted in a zone of penetrative shortening and metamorphism that trends approximately north-northwest across the Selkirk-Cariboo-Monashee mountains of the southeastern Omineca belt (e.g., Okulitch, 1984; Monger et al., 1982; 1986; Ghent and Simony, 2005). The Omineca belt is locally overprinted by Eocene extensional deformation (e.g., Monger and Price, 2002; Evenchick et al., 2007).

Middle Jurassic shortening and crustal thickening up to 50–55 km in the Omineca belt involved tectonic wedging, basement-cover detachment, and complex deformation of the detached supracrustal rocks (e.g., Simony et al., 1980; Price, 1986; Brown et al., 1986; Brown and Journeay, 1987; Murphy, 1987; Struik,

1988; Colpron et al., 1996; 1998; Gibson et al., 2008). Southwest-verging overturned or recumbent folds, nappes and thrusts accompanied by regional metamorphism involved mainly the Neoproterozoic Windermere Supergroup and latest Neoproterozoic–lower Cambrian Hamill Group and the lower Paleozoic Lardeau Group. At the latitude of our study, the intensity of Jurassic metamorphism reached upper amphibolite facies in the western Selkirk Mountains (Colpron et al., 1996; Gibson et al., 2008), and decreased northwesterly to low-grade in the northern Monashee Mountains (Raeside and Simony, 1983), to low- and very low-grade in the Cariboo Mountains (Reid et al., 2002). Major structures formed during the Jurassic contraction are sealed by the 174 Ma Hobson pluton in the Cariboo Mountains (Gerasimoff, 1988) and by the 167 Ma Adamant pluton in the Selkirk Mountains (Gibson et al., 2008).

Subsequent recurrent tectonothermal events in the Selkirk-Monashee-Cariboo mountains (the SMC metamorphic complex of Crowley et al., 2000) of the southeastern Omineca belt reached peak metamorphic conditions in different areas at different times: from Early Cretaceous in southeastern Cariboo Mountains (Currie, 1988), to mid-Cretaceous in the northern Monashee Mountains (Sevigny et al., 1990; Scammell, 1991; 1992; 1993), to Late Cretaceous and Paleocene in distinct linear domains of the northeastern Monashee Mountains near the SRMT (Crowley et al., 2000), and to Paleocene in the northwestern Monashee Mountains (Digel et al., 1998).

Paleoproterozoic "autochthonous" North American basement in the Omineca belt is exposed in tectonic windows in structural culminations such as the Monashee and Malton complexes; these structural culminations also expose the décollement at the interface between basement and its "parautochthonous" cover represented by Neoproterozoic Windermere Supergroup and Paleozoic formations (e.g., Parrish and Armstrong, 1983; Brown et al., 1986; Carr, 1995; Johnson and Brown, 1996; Johnson, 2006). The east-verging structures (F2 and F3) in the southeastern Omineca belt were inferred to be Late Jurassic to Paleocene and congruent with the structures across the central segment of the SRMT in the western RM-FTB (Currie, 1988; Residae and Simony, 1983; Sevigny and Simony, 1989; Gibson et al., 2008).

On the east side of the SRMT, the Canadian RM-FTB consists of east-verging overlapping thrust sheets and detached folds formed between Late Jurassic and early Eocene within an easterly-tapering wedge of Middle Proterozoic to early Cenozoic sedimentary (with minor igneous) rocks that were deposited on the ancestral western margin of North America (Price, 1981; McMechan and Thompson, 1992; Pană and van der Pluijm, 2015; Pană et al., 2018a, b). A profound unconformity separates the sedimentary cover from the normal thickness or attenuated Paleoproterozoic and older crystalline crust of ancestral North America (e.g., Price, 1994).

Orthogneiss cores of easterly overturned or recumbent folds (the Yellowjacket, Bulldog, Blackman, and Hugh Allan gneiss bodies) exposed in thrust slices of the westernmost RM-FTB along the east side of the SRMT (Figures 2, 3) have been also interpreted as slices of North American basement (Oke and Simony, 1981; McDonough and Simony, 1984; 1986; 1988b; McDonough and Parrish, 1991). Their relationships with the adjacent stratigraphy of the RM-FTB are discussed in the next section.

3 Geology of the Investigated Western Margin of the Rocky Mountains

Our study area includes a portion of the RM-FTB and the northern segment of the SRMT between 52°42'N and 53°47'N latitude with a focus on the western margin of the Rocky Mountains mostly underlain by the Neoproterozoic Windermere Supergroup (Figures 1–3). The Windermere Supergroup includes the Horsethief Creek, Kaza, Cariboo, and Miette groups deposited on the western passive margin of ancestral North America (e.g., Campbell, 1968; 1970; 1973; Campbell et al. 1973; 1982; Carey and Simony, 1985; Pell and Simony, 1987; Ross, 1991; Ross and Arnott, 2007; McMechan, 2015). These stratigraphic units consist of southeastward-tapering granule conglomerate, pelite, and carbonate, and indicate crustal thinning and stretching, processes initiated with the 800–700 Ma emplacement of alkaline and carbonatite intrusions during the breakup of Rodinia (e.g., Millonig et al., 2012).

Figure 3. Sample location map of the northern segment of the Southern Rocky Mountain Trench (SRMT) area between Walker Creek and northern Kinbasket Lake (northern rectangle in Figure 1). Orange dots are sample locations dated by K-Ar with numbers representing the last two digits of the Sample ID as in Table 1. Red dots are locations of samples analyzed in this study with numbers as in Table 2. The green, red, and pink dashed lines represent biotite (Bt), garnet (Gt) and staurolite-Kyanite (St-Ky) isogrades. The yellow solid line represents group contacts. Simplified geology compiled from Mountjoy (1980), McDonough and Murphy (1994), Ross and Ferguson (2003), Ferguson and Ross (2003), McMechan (1996), and Reid et al. (2002). B – Bulldog orthogneiss; GC – Gold Creek orthogneiss; NRMT – Northern Rocky Mountain Trench; Y – Yellowjacket orthogneiss.

In the Rocky Mountains, the Neoproterozoic strata are assigned to the Miette Group. Very similar lithological assemblages have been recognized on either side of the investigated segment of the SRMT (Figure 3). The Miette Group of the RM-FTB is partly correlative with the Kaza Group of the Omineca belt in the McBride area (McMechan, 1996; Ferguson and Ross, 2003), and with parts of Horsethief Group of the Omineca belt in the Kinbasket Lake area (McDonough and Simony, 1988a; 1989).

North of Valemount, the east flank of the Trench is underlain by the Neoproterozoic Miette Group (Windermere Supergroup) with a sliver of Cambrian McNaughton quartzite between Holmes Creek and McBride (Figure 3) (Mountjoy, 1980; McDonough and Murphy, 1994; Ferguson and Ross, 2003). The Old Fort Point Formation mapped in the middle Miette Group in the Rocky Mountains (McDonough and Murphy, 1994; Ferguson and Ross, 2003) has been also recognized across the SRMT between the middle and upper Kaza in the Cariboo Mountains (Ferguson and Ross, 2003). The Walker Creek fault zone on the east side of the Trench, merges with the Trench south of the town of McBride; farther south along the east side of the Trench between Holmes Creek and Tête Jaune Cache, we have observed subhorizontal lineation within a 2–3 km wide zone of tight folds initially identified by Mountjoy (1980) (Figure 3). This belt projects to the southeast into the pre- to synmetamorphic Bear Foot thrust and its footwall "Valemount strain zone" (McDonough and Simony, 1989; McDonough and Murphy, 1994).

South of Valemount on the east side of the SRMT (here occupied by the Kinbasket Lake), several Paleoproterozoic orthogneiss slices are exposed in thrust sheets on the western slopes of the Selwyn Range (part of the Main Ranges of the Rocky Mountains) (Figures 2, 3). From north to south these are the structurally lower Yellowjacket gneiss carried in the hanging wall of the synmetamorphic Bear Foot thrust and the overlying Bulldog gneiss carried by the postmetamorphic Purcell thrust (McDonough, 1984; McDonough and Simony, 1988a, b; 1989). Across the Trench at the north end of the Monashee Mountains, the Malton gneiss complex consists of the Paleoproterozoic Malton orthogneiss and its metasedimentary cover (e.g., Morrison, 1979; 1982). McDonough and Simony (1984; 1988a, b, 1989) interpreted the Malton orthogneiss in the Omineca and the Yellowjacket-Bulldog gneiss units across the Trench as slices of the same gneiss complex, despite apparent geochemical and geophysical dissimilarities identified by Chamberlain and Lambert (1985a, b) and Chamberlain et al. (1979; 1980). Some 30 km south of Bulldog Creek, the Mount Blackman gneiss is underlain by a premetamorphic shear zone and overlain by the postmetamorphic Purcell thrust, which carries the Hugh Allan Creek gneiss (Oke and Simony, 1981; Oke, 1982; Mountjoy et al., 1984, Mountjoy and Forest, 1986, Mountjoy, 1988).

All the thrust sheets on the east side of Kinbasket Lake (west margin of the Rockies) have been described to consist of orthogneiss infrastructure overlain by decollement zones carrying parautochtonous metasedimentary cover (Oke and Simony, 1981; McDonough, 1984; McDonough and Simony, 1988b; 1989). The more micaceous gneiss and micaschist were typically interpreted as metasedimentary cover and assigned to the Neoproterozoic lower Miette Group, partly equivalent with the Horsethief Creek Group of the southeastern Omineca (McDonough and Simony, 1988a; 1989). The micaceous sequences commonly assigned to the cover are often intercalated with orthogneiss and have variable thickness and lithological composition in different thrust sheets.

Along the trunk road on east side of northern Kinbasket Lake, Murphy (1990) reported a vertical shear zone with subhorizontal lineation in the Yellowjacket gneiss, showing dextral displacement parallel to the Trench. Trench-parallel subhorizontal lineation was subsequently mapped throughout the Bulldog and Yellowjacket units (McDonough and Murphy, 1994). Farther south, the Hugh Allen Creek gneiss contains a subvertical strike-slip shear zone with a 10°SE plunging lineation, which parallels the local trend of the Trench (Oke and Simony, 1981).

From north to south in the investigated area, biotite, garnet, and staurolite-kyanite isogrades crosscut the tectonic contacts from the metasedimentary cover of the orthogneiss nappes and thrusts into the underlying Miette strata homotaxial with the stratigraphy of the western Rockies (McDonough at al., 1991a, b; McDonough and Murphy, 1994). Although the isograds are difficult to trace across the Trench, the metamorphic zonation in the Rockies appears to roughly correspond to that of the adjacent Omineca belt. Farther south, between the Selkirk Mountains of the Omineca belt and Solitude Range of the western Rockies, models of pre- and postmetamorphic thrusting are compatible with late, southwest dipping normal faulting along the trench (Gal et al., 1989; Gal and Ghent, 1990).

The controversy over the nature and magnitude of faulting in the SRMT leading to the variety of interpretations (Murphy, 1984, 1990, 2007; Mattauer et al., 1983; van den Driessche and Malusky, 1986;

Price and Carmichael 1986; McDonough and Murphy, 1994; McMechan, 2000) reflects, in part, the paucity of outcrop in the floor of much of the SRMT. Between the towns of McBride and Valemount, the SRMT is a flat area up to 10 km wide largely covered by Quaternary alluvial and lacustrine deposits. The few isolated outcrops within the trench expose highly sheared and transposed equivalents of Neoproterozoic Cariboo Group sedimentary units mapped in the Cariboo Mountains (Ross and Ferguson, 2003). Around Valemount, the floor of the trench is overlain mostly by post-glacial sand dunes. To the southeast, for more than 185 km, the trench floor is occupied by Kinbasket Lake, which hinders the examination of field relationships between the orthogneiss slices in the Rockies and the Malton orthogneiss, as well as the relationships between their metamorphosed cover sequences; specifically, Miette Group of the Rockies and the Horsethief Group of the Omineca belt.

4 Previous Geochronological Data

4.1 Rocky Mountains

Unlike many other fold-and-thrust belts where the age of thrusting can be inferred from field relationships (e.g., age of hanging wall and footwall formations, dated igneous rocks plugging thrusts and/or stratigraphic units of well-constrained age sealing the thrusts), thrusting in the RM-FTB could only be indirectly deduced based on depositional features in the Alberta basin or involvement of the youngest strata in deformation. Thus, the RM-FTB was considered to have evolved between the first record of westerly derived clastic sediments from the Cordilleran orogen deposited in the Kimmeridgian strata of the upper Fernie Formation (McMechan et al., 2006; Raines et al., 2013; Quinn et al., 2016) and the latest record of compression recorded by the involvement of Paleocene–earliest Eocene Paskapoo Formation in the Foothills deformation (e.g., Entrance, Grease Creek, Williams Creek synclines; Ancona and Brewster Creek thrusts). The cessation of compression must have predated the earliest record of extension: early Oligocene graben fill (Kishenehn Formation) in the hanging wall of the Flathead fault in the southernmost Canadian Rockies.

Several apatite fission track studies hinted to uplift, erosion, and cooling of the RM-FTB above 70 to 110°C for typical apatite (using the number of fission events produced from the spontaneous decay of uranium-238 in common accessory minerals to date the time of rock cooling below closure temperature), and about 230 to 250°C for zircon during the Paleocene: 65–60 Ma (Donelick and Beaumont, 1990); 60 Ma (McDonough et al., 1995); 59 Ma (Sears, 2001); 74–59 Ma (Hoffman et al., 1976); 60–55 Ma (Kalkreuth and McMechan, 1988, 1996); 59 Ma (Arne and Zentilli, 1994). Direct dating of fault gouge collected from individual thrusts documented four orogenic pulses (Late Jurassic, mid-Cretaceous, Late Cretaceous, and early Eocene) separated by relatively long periods of tectonic quiescence (van der Pluijm et al., 2006; Pană and van der Pluijm, 2015).

4.2 Western Margin of the Rockies and the Southern Rocky Mountain Trench

On the western margin of the Rockies, the Yellowjacket granodiorite orthogneiss samples yielded U-Pb emplacement ages of ca. 1870 Ma (zircon and allanite) and ca. 1872 Ma (zircon) with imprecise Permian lower intercept ages; two leocogranite samples from the Bulldog Creek gneiss unit yielded ages of 1870 Ma and 1866 Ma (McDonough and Parrish, 1991). Well-defined arrays in the Yellowjacket and Bulldog Creek orthogneiss samples indicate contemporaneous emplacement of the granitoid protoliths at ca. 1870 Ma with some Archean component [ϵ Nd_(1870 Ma) values of -3.4 and -2.6], whereas the lower intercepts appear to record a period of Pb loss in monazite from migmatitic schist possibly related to late Paleozoic, post-Antler tectonometamorphic events in the latest Mississippian (326 ±36 Ma) and Permian (276 ±19 Ma; 259 ±34 Ma; McDonough and Parrish, 1991). A felsic gneiss from the Mount Blackman unit yielded a U-Pb zircon age of 1950 Ma and an amphibolite produced a whole-rock Rb-Sr age of 1860 ±50 Ma (Chamberlain and Lambert, 1985b) in the 1870–1860 Ma range of the Yellowjacket and Bulldog Creek gneisses. The Hugh Allan Creek orthogneiss, the only gneiss body affected by polyphase migmatization

(Oke and Simony, 1981), yielded Rb-Sr ages of 900 Ma and 805 ± 11 Ma (Chamberlain et al., 1979; Chamberlain and Lambert, 1985b), and a leucogranite yielded a U-Pb zircon crystallization age of ca. 736 Ma, with an imprecise Jurassic lower intercept age of 173 ± 78 Ma (McDonough and Parrish, 1991).

Instead, a K-Ar biotite age of 72 ± 5 Ma was reported from a retrogressed, foliated and lineated Bulldog biotite gneiss along the road on the eastern side of northern Kinbasket Lake—just a few kilometres south along strike from Murphy's (1990) strike-slip shear zone—and "may date an important tectonic and metamorphic episode in the Late Cretaceous near the Rocky Mountain Trench" (Wanless et al., 1967). A Late Cretaceous "orogenesis" (low-grade metamorphism accompanied by folding, cleavage development, thrust and strike-slip faulting) propagating from the trench was proposed by Charlesworth et al. (1967). These authors reported whole-rock and muscovite K-Ar ages from arenaceous rocks and slates of the Neoproterozoic Miette Group collected along Highway 16, ranging from 69 Ma (age of orogenesis) near the Rocky Mountain Trench (Tête Jaune Cache) to 1770 Ma (age of the muscovite source rocks), eastwards towards the town of Jasper.

Van den Driessche and Maluski (1986) reported 40 Ar/ 39 Ar ages of 78 ±2 Ma from muscovite and 100 ±2 Ma from biotite recovered from a sample of sheared Miette conglomerate collected at an unspecified location near Tête Jaune Cache. The authors proposed a mid-Cretaceous (?) age for the syn- to late-tectonic metamorphic minerals in their orogen-parallel zone of high strain along the Trench, which is roughly coincident with the mapped trace of the Purcell thrust.

North of McBride, McMechan and Roddick (1991) produced whole rock K-Ar ages using the less than 1 µm size fraction in an attempt to date the very low- to low-grade tectonometamorphic imprint on the Neoproterozoic Miette Group and Cambrian McNaughton Formation of the western Rocky Mountains. They reported ages ranging from 261 to 141 Ma, which have limited—if any—geological significance (Table 1).

Across the Trench in the Malton gneiss complex, the Precambrian age of the orthogneiss was initially inferred based on discordant U-Pb zircon dates of ca. 2500 Ma and 1300–1200 Ma, and Rb-Sr ages of ca. 1767 ± 20 Ma, possibly with Archean components as suggested by a Rb-Sr errorchron of 3235 ± 258 Ma (Chamberlain, 1983). A lineated granodioritic augen gneiss produced a well-defined discordia array with an upper intercept age of 1987 Ma and an imprecise lower intercept of 93 ± 142 Ma (McDonough and Parrish, 1991) in the range of other Cretaceous ages of metamorphism recognized in the northern Monashee Mountains (Sevigny et al., 1989, 1990; Crowley et al., 2000) but absent in the sampled orthogneiss units on the east side of the trench.

Sample ID	UTM Location, Zone 10 (Easting/Northing)	Stratigraphic Unit	Rock Type		K-Ar Age (Ma)	⁴⁰ Ar/ ³⁹ Ar Age (Ma)
GSC 91-17	651050 / 5960300	McNaughton Fm.	Argillite; phyllitic, cleav	181.0 ±4.8		
GSC 91-12	646700 / 5960900	Upper Miette Gp.	Phyllite; weakly crenul	ated	152.9 ±2.6	
GSC 91-14	682400 / 5928400	Upper Miette Gp.	Phyllite; laminate, wea	kly crenulated	140.9 ±2.4	
GSC 91-16	681200 / 5966700	Upper Miette Gp.	Argillite; phyllitic, lamir	261.4 ±5.7		
GSC 91-13	664950 / 5967150	Middle Miette Gp.	Argillite; silty, cleaved		226.0 ±3.0	
GSC 91-15	664500 / 5966050	Middle Miette Gp.	Argillite; silty, poorly cleaved		178.3 ±4.6	
GSC 91-18	696900 / 5933350	Middle Miette Gp.	Phyllite; fine crenulatio	n cleavage	231.9 ±3.7	
GSC 65-24*	1.6 km NW of Bulldog Cr.	Bulldog gneiss	Chl-retrogressed, lineated gneiss		72 ±2	
		Middle Miette Gp.	Conglomerate.with	muscovite		78 ±2
TO28**	Tête Jaune Cache		horizontal stretching	biotite		100 ±2

Table 1. Summary of previous K-Ar and	⁴⁰ Ar/ ³⁹ Ar ages in the	investigated region.
---------------------------------------	--	----------------------

Note: Samples labelled GSC91- are from McMechan and Roddick (1991); sample marked * is from Wanless et al. (1967) and that marked ** is from Van der Driessche and Malusky (1986).

Zircon analyses from a second lineated augen gneiss are not collinear, but instead yielded individual 207 Pb/ 206 Pb ages of 2062–2069 Ma. ϵ Nd values for these gneisses are -2.6 (T=1990 Ma) and -1.8 (T=2060 Ma) (McDonough and Parrish, 1991). Immediately to the north in the southeastern Cariboo Mountains, similar ages of ca. 2080 Ma have been reported from the Gold Creek orthogneiss (Murphy et al., 1991), a tectonic sliver intercalated into the amphibolite facies Mica Creek succession of the lower Kaza Group (Figure 3).

5 New Samples

Two samples were collected from highly strained rocks near thrust faults in the Foothills and one from the immediate hanging wall of the McConnell thrust that marks the boundary between the Foothills and the Front Ranges of the Rockies. Two more samples have been collected along Highway 16, west of Jasper from phyllonite of the Monarch and Moose Pass thrusts in the Main Ranges. From the western margin of the Rockies, five samples were collected from the Bear Foot thrust and its strained footwall known as the Valemount strain zone (VSZ), and four samples were collected along the Walker Creek fault zone (WCFZ). Eleven more samples were collected along the SRMT that separates the RM-FTB from its hinterland, the Omineca belt.

In an attempt to distinguish between syntectonic muscovite/sericite ages in phyllonite and the detrital muscovite of the protolith, we have collected two samples of less or non-sheared Miette Group: one sandstone from the Lower Miette along Highway 16 (Sample M1; Figure 2) and one pelite, just south of the intersection of Highway 1 and Highway 93 (Sample M2; Figure 2).

The locations of analyzed phyllite and phyllonite samples are shown in Figures 2 and 3. Table 2 includes the UTM coordinates of the samples and a summary of their stratigraphic and structural context. Samples in the Rocky Mountain fold-and-thrust belt have intermediate dips (30–60°), whereas most samples near the SRMT were collected from rocks with steeply dipping foliation and subhorizontal stretching lineation or mullions. Approaching the Trench, both from the Cariboo Mountains to the west and from the Rocky Mountains to the east, within 1–3 km, bedding is gradually transposed by a foliation steeply dipping into the SRMT, with subhorizontal mullions, fold axes, and stretching lineation paralleling the SRMT. Although the deformation is complex and polyphase, there is a common denominator: the structural trends are consistently subparallel or rotated into parallelism to the local trend of the Trench. Detailed structural analyses of the dextral WCFZ can be found in McMechan (2000), and of the oblique dextral strike-slip Valemount strain zone (VSZ) in van den Driessche and Malusky (1986) and McDonough and Simony (1989). Photographs of the outcrops examined and sampled for this study, which show the characteristic structural elements of the three zones of strain concentration are included in Appendices 1 and 2.

6 Analytical Technique

The ⁴⁰Ar/³⁹Ar analyses have been carried out in the Argon Geochronology Laboratory of TerraChron Corp. of the Department of Physics, University of Toronto, and by GeochronEx Analytical Services Ltd. Full step-by-step analytical results are presented in Appendix 3. Because the main objective of this study was to derive ages of tectonism, sampling focused on the selection of secondary micas, free of detrital minerals (except for the two non- or slightly sheared Miette Group samples analyzed for detrital muscovite). We examined the general appearance and physical characteristics of the samples, and then the selected portions were gently crushed and examined under the binocular microscope to identify the most recent mica generations and to select grains for irradiation. Thus, the analyses are on material that represents our best efforts to physically separate the most recent generation of muscovite (sericite) from the previous generations of mica in the samples. However, this was not always a straightforward undertaking, and it may not have been achieved in all samples. Particularly difficult was the separation of datable material near the shallow thrust faults of the Foothills. Moreover, some samples were undersized in order to ensure their purity, which limited the number of heating steps.

Sample No.	Site	Easting	Northing	Location	Stratigraphic Unit	Strat. Age	Structural Measurements	
Burnt Timber								
1	DP8-199	627708	5719314	NW side of road along Timber River	Cadomin/Paskapoo fms	LCret/Paleocene	S=242°/35°	
Brazeau thrust								
2	DP9-548	471105	5909602	NW of bridge across Chungo Creek	Brazeau Fm.	UCretaceous	B=28°/55°	
McConnell thr	ust		1					
3	DP7-6A	541546	5790286	NW side of Hwy 11 vis-à-vis Abraham L.	Eldon/Luscar	Cambr/Cret	S=212°/37°	
Miette Group		4400-0						
M1	DP16-359	412372	5858915	S side of Hwy 16 (Corral Ck W of Jasper)	Middle Miette (m-M)	Proterozoic	B=245°/40°	
M2	DP8-1202A	555617	5699184	SE of Hwy 1-Hwy 93 intersection	Miette shale/siltstone	Proterozoic	L=333°/3° (intersection)	
Monarch thrus	st	440000						
4	DP11-123	418092	5/21106	Small outcrop on S side of Hwy 16	Middle/Upper Miette	Proterozoic	S=256°/35°	
Moose Pass t	hrust	400504	5000700	Outcome O side of the AC AD/DO hander	NA: della // Jacobara NA: a tta	Destancesia	0.0508/228	
5	DP11-1250	402584	5863798	Outcrop, S side of Hwy 16, AB/BC border	Middle/Upper Miette	Proterozoic	S=250 ⁻ /33 ⁻	
Walker Creek	fault zone	054750	5069240	W.E. ridge Welker Creek watershed	Mural Em (Mabta Em	Combrian	C-026°/6E°	
0	DP12-110	201700	5900349	VV-E huge - Walker Creek watershed		Camphan	3-230 /05	
1	DP12-112	257569	5957609	Saddle north of Morkill River	Yankee or Isaac Fm.	Proterozoic	0.0008/008.1.0408/08	
8	DP11-136	262183	5952477			Camprian	S=226 ⁻ /90 ⁻ ; L=316 ⁻ /2 ⁻	
y Vi	DP12-70	278439	5931853	East Twin Creek strike-slip fault	East I win Fm.	Proterozoic	S=60°/80°; L=133°/35°	
Valemount str	ain zone	205454	5000600	Zono of tight incoling folding	Middle Miette Cr	Drotorozoio	C-020°/E0°: 1-20E°/20°	
10	DP12-105	323431	50502003	Zone of tight isocilitat folding	Middle Miette Gp.	Proterozoic	S-230 /50 , L-305 /30	
11	DP10-4X	337449	5872343	Tête Jaune Cache (Hwy 16)	Middle Miette Gp.	Proterozoic	S=220 ⁻ /87 ⁻ ; L=318 ⁻ /12 ⁻	
12	DP12-125	337523	5872332	Tete Jaune Cache (Hwy 16)	Middle Miette Gp.	Proterozoic	Mullion L=305 ⁷ /3 ²	
13	DP16-362	339541	5872607	NE side of Hwy 16, ~ 2 km E of Trench	Lower Miette (I-M)	Proterozoic	B=245°/3°; S=245°/87°	
14	DP12-876	337449	5872343	Bear Foot thrust (S of Swift Creek)	Yellowjacket-Miette	Proterozoic	S=230°/64°; L=300°/32°	
Southern Roc	ky Mountain T	rench shear	zone	Enseen Diven Dridge to Merkill Diven	Creaniah array abyllarita	Drotonomia	0-0000/00001 0400/50	
15	DP11-133	257293	5943432	Fraser River Bridge to Morkill River	Greenish-grey phylionite	Proterozoic	S=228 /90 ; L312 /5	
16	DP11-137	200408	5926253		Upper Kaza	Proterozoic	S=215*/60*; L=300*/4*	
17	DP12-80	269534	5928262		Yankee-Cunningham	Proterozoic	S=227°/83°; L=310°/5°	
18	DP12-77	274869	5929798	N of East I win Creek (NE side of SRMI)	East I win Fm.	Proterozoic	S=205°/55°; L=295°/12°	
19	DP12-81	276428	5919472	Hwy 16 (Clyde Creek, SW side of SRMT)	Middle Kaza Gp.	Proterozoic	S=230°/63°; L=304°/5°	
20	DP11-146	298738	5904332	Holmes Creek quarry (NE side of SRMT)	McNaughton Fm.	Cambrian	mullion L=132°/5°	
21	DP12-94	336552	5872121	lete Jaune Cache (W bank of Fraser R.)	Middle Miette Gp.	Proterozoic	S=34°/83°; L1=320°/40°; L2=300°/5	
22	DP10-2x	337067	5872187	Tête Jaune Cache (N turn of Hwy 16)	Middle Miette Gp.	Proterozoic	S=210°/85°; L=300°/6°	
23	DP11-173	349490	5854225	Valemount townsite	Cunningham Fm.	Proterozoic?		
24	DP10-8x	356161	5848425	E of north end of Kinbasket Lake	Yellowjacket cover, retrogr. crenulated Gt-micaschist	Proterozoic		
25	DP11-161	367977	5831437	E of Kinbasket Lake	Bulldog cover, retrogr.	Proterozoic	S=215°/63°	

 Table 2. ⁴⁰Ar/³⁹Ar sample locations and their stratigraphic and structural context.

<u>Note:</u> All structural measurement orientations are dip direction/dip angle; Gt – garnet

The selected grains were packaged in aluminum foil and loaded into an aluminum canister, together with a number of grains of the sanidine standard TCR and the hornblende standard Hb3gr, and irradiated in the McMaster Nuclear Reactor, Hamilton, Ontario. The samples were irradiated for a total of 48 Megawatthours (approx. 16 hours in the reactor).

Once the canister was returned to Toronto, the samples and standards were placed into holes in an aluminum disk and loaded into the ultra-high vacuum sample chamber within the mass spectrometer inlet system. After pumping down, the sample chamber and gas extraction line were baked for at least 12 hours at 150°C to achieve low argon blank levels.

The first stage in analysis was to fuse each of the standards in a single heating step, using a Lee Laser Nd-YAG laser operated with frequency doubling, to produce green light of 532 nm wavelength. The evolved gas was then purified by an SAES type 707 Ti-Fe-Zr getter held at 250°C to remove all reactive gases. The remaining noble gas component was let into a VG1200 mass spectrometer equipped with an ion multiplier for analysis of argon. The mass spectrometer was operated in static mode, isolated from the pumps during the analysis. All five natural and irradiation-produced argon isotopes (³⁶Ar through ⁴⁰Ar) were measured in 20 to 40 successive cycles over about a one-hour period, followed by pumping out of the mass spectrometer. Procedural blanks (in which all steps except the laser heating were followed) were performed before each analysis. The resulting argon isotope measurements were reduced using software developed in-house at the TerraChron Laboratory of the University of Toronto, which includes correction for atmospheric contamination, mass discrimination, and for interfering nuclear reactions resulting from the irradiation, as well as appropriate statistical analysis of the data, including a detailed treatment of error propagation. The J value (essentially the efficiency of 39 Ar production from 39 K) was calculated for each standard, using an age of 28.32 Ma for the TCR standard, (the Hb3gr standard with assumed age of 1071 Ma is also monitored). The J value varies with position in the container during irradiation, and standards are distributed along the length of the container. Each sample analyzed was assigned an appropriate J value for the irradiation, depending on its own position in the irradiation container.

The samples were analyzed by an identical procedure, except that for the unknown samples the gas release was done in a series of heating steps. In each heating step, the sample was heated by the laser, generally for 30 seconds, followed by the gas purification and analysis steps as above. In successive heating steps the laser power was gradually increased until the sample was fused in the final step.

The samples analyzed by GeochronEx were wrapped in Al foil and loaded into an evacuated and sealed quartz vial with K and Ca salts, and packets of LP-6 biotite interspersed with the samples to be used as a flux monitor. The samples were irradiated in the nuclear reactor for 48 hours. The flux monitors were placed between every two samples, thereby allowing precise determination of the flux gradients within the tube. After the flux monitors were run, J values were calculated for each sample, using the measured flux gradient. LP-6 biotite has an assumed age of 128.1 Ma. The neutron gradient did not exceed 0.5% on sample size. The Ar isotope composition was measured in a Micromass 5400 static mass spectrometer. 1200°C blank of ⁴⁰Ar did not exceed n*10⁻¹⁰ cc Standard Temperature and Pressure (STP).

7 Analytical Results

The step-heating ⁴⁰Ar/³⁹Ar analyses were performed on mineral separates that represent our best efforts to physically select the most recent generation of muscovite (sericite) from the detrital mineral phases in the samples in order to derive ages of tectonism. The argon data have been carefully examined and the analytical results for each sample are discussed based on interpretive tools such as age spectra and isochron plots for indications of meaningful ages. Raw data were delivered by the TerraChron Laboratory of the University of Toronto and by GeochronEx (Appendix 3). The next section includes a discussion of the results of our detailed step-heating ⁴⁰Ar/³⁹Ar analyses from each thrust fault, fault/shear zone. A summary of the results obtained in this study is included in Tables 2 and 3.

Sample No.	Lab Analysis ID	Type of Material	No. of Steps	Integrated Age (Ma)	Preferred Age (Ma)	Method†	Fraction(s) Used	% ³⁹ Ar	⁴⁰ Ar/ ³⁶ Ar	∑S *(n-f)
Burnt Tir	mber thrust	I			T	1	I	1	I	
1	YK-223s	muscovite	7	166.7 ±1.9						
Brazeau	thrust (striat	ed sandsto	ne ~10	00 m in front o	of thrust)	1	r	1	1	
2	YK-220	feldspar	8	135.9 ±1.5	135.1 ±1.5	plateau	58	~70	182 ±7	
					138.6 ±1.5	isochron				
McConn	ell thrust (ca	rbonatic sha	ale, har	nging wall, ~2	0 m above thr	ust surface	e)			
3	YK-216	sericite -	7	291.1 ±3.0						
		illite								
Miette G	roup detrital	muscovite	40	4540.0.00.0	4047 44.0			07.0	1	F
M1	YK-G418	muscovite	10	1549.3 ± 33.2	1647±14.0	plateau	5	67.8		
M2	YK-220m	muscovite	12	1480.0 ±11.7	1593 ± 12.3		3	~35		
Monoroh	thruct	sencite	12	1000.2 ±9.3	1234.3 ±10.3	VVIVI	3	~40		
WONAICI		hiotito	8	704.0 ±5.2	620 +58	icochron	3.7	8/3	1870 ±070	2.24
4	P57-004	whole rock	0 15	704.0 ± 3.2 273 7 ± 0.0	020 ±30	low	3-7	04.3 2.1	10/0 ±9/0	Z.24
	1 37-007	WHOLE TOCK	15	213.1 ±0.5	624.0 ± 4.0	high	15	2.1		
Moose F	Dase thrust		I		024.0 14.3	nıyıı	15	2.5		
1000301	P57-009	amphibole	10	326 3 +1 3	452 +5 1	hiah	10	6.6	1	[
5	P57-002	muscovite	22	289.9 +0.8	134 8 +1 8	low	1-3	8.1		
Ŭ	107 002	massevite		200.0 ±0.0	421.0 +4.8	hiah	22	2.0		
Walker (Creek fault zo	one	1			g.i				
6	P59-081	muscovite	17	171.9 ±0.8	85.3 ±0.9	plateau	1-3	5.8		0.05
7	P50_068	muscovite	18	135.4 ±0.6	123.7 ±0.7	plateau	5-9	22.8		3.05
'	1 33-000				132.5 ±2.5	isochron	10-16	63.5	1847 ±544	
8	D57 030	muscovite	16	106.1 ±0.3	96.1 ±1.0	low	4	24.3		
v	1 07 000				168.3 ±2.3	high	16	0.7		
9	P59-017	muscovite	12	92.4 ±0.5	79.0 ±0.6	plateau	1-3	17.8		
•					95.9 ±5.1	plateau	4-12	82.2		
Valemou	<u>unt strain zon</u>	e						-		
10	P63-055	muscovite	10	84.2 ±0.7	77.1 ±0.7	low	2	18.2		
					96.5 ±0.8	high	9, 10	19.3		0.36
11	P54-019	sericite	15	70.2 ±0.5	72.6 ±0.4	plateau	13-15	45.7		0.10
40	DE0 090	muscovite	12	71.2 ±0.4	68.3 ±0.7	isochron	1-5	15.1	282.4 ±7.1	0.77
12	P59-080				71.4 ±0.7	isochron	6-12	84.9	305.3 ±4.8	12.83
	X//(0.404)	1	40	77 5 4 0	421.0 ±4.8	high	22	2.0		
13	YK-G421b	biotite	10	//.5 ±1.6	87.02 ±0,66	plateau	6	72.6		
	YKG421m	muscovite	10	127.4 ±2.0	C0.01.1		1.4	47		0.12
14	P59-026	muscovite	15	71.9±0.3	00.0 ± 1.1	plateau	1-4	1.7		0.13
					07.3 ± 0.9	nlatoau	1-0 5 15	08.3		1 37
Souther	n Rocky Mou	ntain Trenc	h shee	r zone	12.0 ±0.4	plateau	0-10	30.3	I	ч .J/
45	P57-041	muscovite	12	1194+04	879+50	low	1	17		
15				1.0.1 ±0.7	160.5 +5 7	hiah	12	21		
16	P57-029	muscovite	11	120.9 ±0.8	135.9 ±1.1	hiah	9-11	25.8		
17	P59-007	muscovite	11	122.3 ±0.6	123.2 ±3.6	plateau	7-9	68.1		13.94
18	P59-020	muscovite	11	99.4 ±0.9	99.3 ±4.4	plateau	1-11	100		19.59
19	P59-008	muscovite	13	123.3 ±0.6	128.0 ±1.5	plateau	9-13	56.2		4.88
	P57-015	biotite	12	101.8 ±0.3	85.2 ±0.6	low	8	8.9		
20	P57-010	muscovite	9	105.9 ±0.6	88.8 ±1.7	low	1-3	9.8		
					155 ±23	high	9	1.0		
	P59-070	plagioclase	6	176 ±12	98.2 ±10.1	plateau	1-4	87.3		0.22
21	P59-218	muscovite	17	71.4 ±0.3	71.9 ±0.7	plateau	8-15	83.9		10.97
L	P59-072	biotite	11	103.1 ±0.6	101.5 ±0.6	isochron	4-10	87.6	327.0 ±5.0	0.66
22	P54-004	sericite	6	74.9 ±0.3	71.7 ±0.4		3,4	20.5		
	P54-028	sericite	30	92.1 ±0.3	77.7 ±3.1	isochron	21-30	36.5	7417 ±524	0.26
23	P57-023	whole rock	16	138.9 ±0.9	85.4 ±0.5	plateau	12-1/	39.2		0.48
24	P54-034	sericite	23	/1.2 ±0.3	/4.3 ±0.4	plateau	22, 23	14.3	610 .074	0.02
25	P57-020	K-Telospar	10	2/2 ±10	219±20	isochron	1-0	100.	010±214	0.00
1	PD/-020	muscovite	IZ	I∠1.0 ±0.0	/ J.U ±U./	ISOCHION	ა-ö	00.3	000 ±33	0.97

Table 3. Summary of ⁴⁰Ar/³⁹Ar analytical results.

Notes: * Goodness-of-fit parameter; f is degrees of freedom: f = 1 for plateaus, f = 2 for isochrons; WM – weighted mean age; † ages marked *low* and *high* represent limiting ages from low-temperature and high-temperature portions of age spectrum

7.1 Foothills, Front and Main Ranges of the Rocky Mountains

7.1.1 Burnt Timber Thrust

Sample 1 is from a sheared dark grey to black cataclastic siltstone collected at the base of the Cadomin conglomerate (Figure 2; Tables 2, 3). The rock is a cataclasite that consists of angular to sub-angular quartz clasts with weakly granulated grain boundaries in a matrix/cement of amorphous Fe-stained clays. Poorly crystalline, very fine-grained interstitial sericite/illite nucleated on the dark clays. Minor biotite locally replaced sericite/illite aggregates. Several fragmented accessory minerals (ilmenite, rutile, zircon, apatite, pyrite, and hematite) are disseminated through the rock matrix. The matrix micas and clays are most likely syndepositional in origin and appear to cement the quartz clasts. A few needle-shaped muscovite grains (0.015–0.3 mm) are partly deformed and may be detrital as they do not line up along a fabric, although a syntectonic origin cannot be precluded.

The sericite separated from this sample (YK-223s) yielded a discordant age spectrum with an integrate age (IA) of 166.7 \pm 1.9 Ma (Figure 4a). The Ca/K spectrum suggests that argon was released from at least two minerals, one sericite and the other Ca-bearing. On the Inverse Isochron Plot, points scatter along the X-axis and do not form any linear regression. The 500°C step characterized by 62% of ³⁹Ar, yielded an age of 149.6 \pm 1.7 Ma. This age is older than the age of the formations on either side of the thrust (hanging wall: Cadomin <125 Ma, and footwall: Paskapoo <66 Ma), hence neither the time of siltstone diagenesis nor the time of thrusting can be accurately approximated. Because the textural relationships suggest the growth of syn- and postdepositional sericite at the expense of amorphous clay masses, the ca. 150 Ma age, if geologically meaningful, can only represent a detrial muscovite/sericite component, possibly the age of the bent, slender muscovite needles (Appendix 2).

7.1.2 Striated Brazeau Sandstone

Sample 2 was collected from a small outcrop along the trunk road just north of the bridge on Chungo Creek (Figure 2; Tables 2, 3), approximately 1 km E of the Brazeau thrust (here not exposed). An anorthoclase crystal (K-Na feldspar) separated from this sample (YK-220) yielded an age spectrum with a low-temperature two-step hump followed by a four-step plateau of 135.1 ± 1.5 Ma (69% of ³⁹Ar) labeled WMPA (weighted mean plateau age) (Figure 4b). On the Inverse Isochron Plot (not shown), plateau points form a linear trend characterized by an age value of 138.6 ± 1.7 Ma, mean squared weighted deviation (MSWD) = 19 and low (⁴⁰Ar/³⁶Ar)₀ = 182 ±7. The high MSWD value suggests the linear trend is likely an errorchron.

7.1.3 McConnell Thrust

Sample 3 is a sheared shale/siltstone collected within 20–25 m above the thrust surface from the Cambrian Eldon Formation along Highway 11 on the west side of Abraham Lake (Figure 2; Tables 2, 3). At this location, the McConnell thrust is not exposed. A concentrate of illite/smectite/sericite? (YK-216) yielded a complex hump-shaped age spectrum (Figure 4c) starting from a low temperature step characterized by 43% of ³⁹Ar, with an age value of 187.6 \pm 2.0 Ma; at higher temperature, it climbed to 600 Ma and decreased to about 450 Ma at fusion temperature. The ca. 188 Ma age corresponds to a flat segment on the Ca/K spectrum suggesting argon release from a homogeneous component of the analyzed mineral separate. At higher temperature steps, the Ca/K ratio varied, probably indicating that the mineral separate included other mineral generations. The youngest age of ca. 188 Ma, if geologically meaningful, roughly coincides with the Early Jurassic age of initiation of tectonic loading of the North American continent. No isochron can be plotted for this sample.

Figure 4. ⁴⁰Ar/³⁹Ar age and apparent K/Ca spectra for thrust faults in the Foothills and Main Ranges of the Rocky Mountain fold-and-thrust belt. a) the black gouge at the base of the Cadomin conglomerate within the Burnt Timber thrust; b) shared carbonate shale within 20 m above McConnell thrust on the west side of Abraham Lake; c) ³⁹Ar/⁴⁰Ar, Ca/K spectra and the isochron diagram for a feldspar grain separated from sheared and striated Brazeau sandstone exposed on the trunk road south of Chungo Creek. Analytical uncertainties (2σ , intralaboratory) are represented by vertical width of bars. Experimental temperatures increase from left to right. Plateau and/or integrated ages, together with other possibly significant ages are discussed in the text, and are listed on each diagram. The symbol * indicates isochron age. Abbreviations: IA, integrated age; MSWD, mean squared weighted deviation; WMPA, weighted mean plateau age.

7.1.4 Miette Group Detrital Muscovite

Faults to the west in the Main Ranges and particularly along the western margin of the Rockies, overprinted mostly Neoproterozoic Miette Group rocks which commonly contain detrital muscovite. The age of the detrital muscovite provides a reference framework for the newly formed, syntectonic white mica (muscovite/sericite). To confidently date detrital muscovite, we selected two Miette rock samples away from faults to be compared with syntectonic white mica (sericite) formed along zones of strain concentration (fault and/or shear zones) that affected the Miette Group during Cordilleran tectonism.

Sample M1 was collected from a coarse Miette sandstone/grit on the south side of Highway 16, west of Jasper (Figure 2; Tables 2, 3). A coarse muscovite separate (YK-G418) yielded a plateau age of 1647 ± 14 Ma from 67.8% of the ³⁹Ar (Figure 5a). The Ca/K spectrum shows a high Ca/K ratio mineral phase for the first three steps, followed by a very low and flat portion corresponding to a single mineral phase that generated the plateau age.

Sample M2 is a silty shale overprinted by very low-grade metamorphism collected from the large outcrop on the east side of Highway 1 at the intersection with Highway 93 (Figure 2; Tables 2, 3). Detrital muscovite and secondary sericite have been separated. The muscovite separate (YK-220m) yielded a discordant age spectrum with a low, rising temperature staircase and a three-step intermediate plateau with an age value of 1593.2 ± 12.3 Ma characterized by 39% of 39 Ar (Figure 5b). On the Inverse Isochron Plot (not shown), points scatter along the X-axis and do not form any linear regression. The Ca/K – Age diagram shows a negative trend between Ca/K and Age values, likely evidence of superposition of argon from at least two minerals, one Ca-bearing and the other sericite. The sericite separate (YK-220s) yielded a discordant age spectrum with a rising, low temperature staircase and a three-step intermediate plateau with an age value of 1234.3 ± 10.3 Ma, characterized by 39% of 39 Ar (Figure 5c). The Ca/K – Age diagram shows a negative trend between Ca/K and Age values, likely evidence of superposition of argon from at least two minerals, one Ca-bearing and the other sericite. The sericite separate (YK-220s) yielded a discordant age spectrum with a rising, low temperature staircase and a three-step intermediate plateau with an age value of 1234.3 ± 10.3 Ma, characterized by 39% of 39 Ar (Figure 5c). The Ca/K – Age diagram shows a negative trend between Ca/K and Age values, likely evidence of superposition of argon from at least two minerals, one Ca-bearing and the other sericite. On the Inverse Isochron Plot (not shown), points scatter along the X-axis and do not form any linear regression.

7.1.5 Monarch Thrust

Sample 4 was collected from a small outcrop of phyllonite from the Monarch thrust (Figure 2; Tables 2, 3) on the south side of Highway 16 west of the town of Jasper. A small biotite crystal (P57-004, Figure 6a), run in eight steps, gives an integrated age (IA) of 703.0 \pm 5.2 Ma, with an integrated Ca/K ratio of 0.24 \pm 0.05. Its age spectrum climbs rapidly from an imprecise age of 90 \pm 70 Ma to ages in the 700 to 800 Ma range before closing at 614 \pm 19 Ma. There is no obvious plateau. The Ca/K spectrum is uniformly flat as would be expected in the analysis of a pure single phase. On the ³⁹Ar/⁴⁰Ar vs. ³⁶Ar/⁴⁰Ar plot the points are somewhat clustered near the ³⁹Ar/⁴⁰Ar axis. Nonetheless, fractions 3 to 7 [with 84.3% ³⁹Ar] fit a line corresponding to an isochron age of 620 \pm 58 Ma, with an elevated initial ⁴⁰Ar/³⁶Ar ratio of 1870 \pm 970 [*S*/(*n*-2) = 2.24]. The high initial ratio can account for the apparent raggedness of the plateau on the age spectrum, and 620 Ma provides the best formation age estimate for this biotite.

From this sample (originally selected for muscovite but the high Ca/K ratios suggest that it was contaminated with plagioclase feldspar), a whole rock analysis (P57-007, Figure 6b), run in 15 steps gives a Permian IA of 273.7 ± 0.9 Ma, with an integrated Ca/K ratio of 14.01 ± 0.05 . On the age spectrum the pattern plunges from an initial age of 625 ± 22 Ma (likely explained by excess argon) to the minimum age of 131.3 ± 7.9 Ma (fraction 3), which may hint to the last Ar-loss event affecting the sample. The next temperature steps climb to a mid-temperature Antler-age peak at 367.5 ± 0.9 Ma (fraction 9). From there, the spectrum falls slightly and then proceeds to climb to a final age of 624.0 ± 4.9 Ma in fraction 15.

Figure 5. ⁴⁰Ar/³⁹Ar age and apparent K/Ca spectra for detrital mica in the Miette Group. Data plotted as in Figure 4.

Figure 6. ³⁹Ar/⁴⁰Ar, Ca/K spectra, and the argon correlation diagrams for a biotite grain (a) and a whole rock sample (b) collected from poorly recrystallized phyllonite of the Monarch thrust just south of Highway 16, west of the town of Jasper. Data plotted as in Figure 4.

Its Ca/K spectrum starts at a ratio of 6.2 ± 0.2 , then climbs rapidly to a maximum of 50.7 ± 0.3 (fractions 4 to 6, with 13.1% of the total ³⁹Ar). This portion of the spectrum probably corresponds to the degassing of plagioclase. At mid-temperature the Ca/K pattern falls to a low of 0.55 ± 0.04 (fractions 10 to 13) before rising slightly to an average of 1.1 ± 0.1 in the final 2 fractions. The low Ca/K ratios characterizing the latter portion most likely signify the higher temperature degassing of the muscovite.

During heating, argon retention in muscovite is expected to be higher than that of associated biotite. On the other hand, the blocking temperature of plagioclase is lower than that of both muscovite and biotite. Thus, the younger apparent ages of the whole rock analysis relative to those of the biotite may reflect less argon retention in the plagioclase, or they may result from new growth of muscovite/plagioclase during tectonism. The final fusion ages of both analyses are coincident at ~620 Ma, correspond to the isochron age of 620 ± 58 Ma obtained from 84% of the ³⁹Ar in biotite and provide the best estimate for the age of this mica.

7.1.6 Moose Pass Thrust

Sample 5 was collected from the Moose Pass thrust on the south side of Highway 16 at the Alberta– British Columbia border (Figure 2; Tables 2, 3). A small amphibole crystal (P57-009, Figure 7a), run in 10 steps, gives an IA of 326.3 \pm 1.3 Ma, with an integrated Ca/K ratio of 1.93 \pm 0.02. Its age spectrum starts at 218 \pm 10 Ma and climbs to a mid-temperature high averaging 384.3 \pm 1.6 Ma (fractions 5 and 6 with 34.4% of the total ³⁹Ar). At higher temperature, the pattern drops to 340.2 \pm 3.6 Ma before climbing again to the final age of 452.0 \pm 5.1 Ma (fraction 10). There are no significant lines on the ³⁹Ar/⁴⁰Ar vs. ³⁶Ar/⁴⁰Ar plot.

A muscovite crystal (P57-002, Figure 7b), run in 22 steps, gives an IA of 289.9 ± 0.8 Ma, with an integrated Ca/K ratio of 0.012 ± 0.004 . On the age spectrum, low temperature fractions 1 to 3 [with 8.1% of the total ³⁹Ar, *S*/(*n*-1) = 0.10] yield a mean age of 134.8 ± 1.8 Ma. Ensuing fractions increase in age progressively to 293.6 ± 1.7 Ma (fraction 11). The next fractions at mid-temperature increase in age very gently and there is a plateau-like portion averaging 324.2 ± 1.2 Ma [fractions 14 to 16 with 23.7% of the total ³⁹Ar, *S*/(*n*-1) = 0.37]. At higher temperature the pattern jumps up to 395.3 ± 1.9 Ma in fraction 19, and then gently rises to the final age of 421.0 ± 4.8 Ma (fraction 22).

On the ${}^{39}\text{Ar}/{}^{40}\text{Ar}$ vs. ${}^{36}\text{Ar}/{}^{40}\text{Ar}$ plot the stepwise increase in apparent age of the fractions 4 to 22 on the age spectrum is shown as a progressively leftward march of these points along the ${}^{39}\text{Ar}/{}^{40}\text{Ar}$ axis.

The complicated spectral patterns from both amphibole and muscovite samples are not easily interpreted. The muscovite age spectrum may indicate a very complex history of argon loss and/or multiple-aged components for this sample. The coincidence of the most recent imprint evident from the lowest temperature fractions, estimated at ca. 135 Ma, with the ca. 131 Ma minimum age registered in the Monarch whole rock sample may be geologically significant.

7.2 Western Rockies

7.2.1 Walker Creek Fault Zone

Four samples (6 to 9) were collected along the Walker Creek fault zone (Figure 3; Tables 2, 3; Appendix 1): sample 6 is from a ridge that exposes Cambrian phyllite/phyllonite; sample 7 is a phyllonite from a saddle north of the Morkill River; sample 8 from the south side of the Morkill River is a muscovite-quartzite from a small quarry in the Cambrian McNaughton Formation with subvertical foliation and conspicuous lineation; and sample 9 from a wide (>100 m) phyllonite zone exposed along the south side of First Twin Creek, about 1 km east of the SRMT margin. All four spectra are complex and the pattern of climbing ages may indicate that the samples have undergone periods of substantial argon loss, with the youngest ages possibly recording the last tectonic overprint.

Figure 7. ⁴⁰Ar/³⁹Ar age and apparent K/Ca spectra for poorly recrystallized phyllonite from the Moose Pass thrust fault. Data plotted as in Figure 4.

The oldest ages preserved are Permian (sample 6, Figure 8a) and Middle Jurassic (sample 8, Figure 9a) fusion ages that resulted from minor amounts of ³⁹Ar and are considered irrelevant. They indicate however, that subsequent tectonothermal events have not completely reset the argon system in detrital muscovite of the Cambrian formations. The 184 Ma weighted average age obtained from the midtemperature range in sample 6, if geologically accurate, corresponds to the inferred Early Jurassic initial tectonic loading of North America. The Jurassic ages, including the inclined plateau averaging 184 Ma and the IA of 172 Ma in this sample are comparable to the previously published K-Ar ages of ca. 181 Ma and 178 Ma (McMechan and Roddick, 1991), and consistent with a tectonothermal event during the Toarcian loading of North America (Murphy et al., 1995; Nixon et al., 1993, 2020). The final temperature age of 168 Ma in sample 8 (Figure 8a) is close to the K-Ar age of 153 Ma previously reported from an Upper Miette phyllite (McMechan and Roddick, 1991). Although correlations to the Jurassic tectonothermal events documented in the SMC metamorphic complex to the south (e.g., Currie, 1988; Gibson et al., 2008) are tempting, none of the K-Ar and incremental ⁴⁰Ar/³⁹Ar step ages permit solid arguments.

The 139.0 ±4.8 Ma well-defined plateau age (68.2% ³⁹Ar, fractions 10 to 16), and the 123.7 Ma (22.8% ³⁹Ar, fractions 6 to 9) lower temperature plateau-like segment in sample 7, appear to be distinct Early Cretaceous (Valanginian and Aptian) tectonic phases rather than one continuous phase (Figure 8b). The isochron treatment of fractions 10–16 compensates for at least some of the excess argon, hence the best estimate for the high-temperature data is given by the isochron result of 132.5 ±2.5 Ma (see Appendix 3).

Total gas ages of 106 Ma and 92 Ma obtained from samples 8 and 9, respectively, suggest a mid-Cretaceous tectonic event (Figure 9). In more detail, the inclined plateau age of 95.9 Ma (82.2% ³⁹Ar) includes a maximum age of 100 Ma and a minimum age of 91 Ma (Figure 9b), and can be considered good evidence for a mid-Cretaceous argon-loss event. Low- and mid-temperature ages obtained from sample 8 are also consistent with a mid-Cretaceous (Cenomanian) event.

The youngest ages in these samples vary from 111 Ma (sample 7), to 85 Ma (sample 6), 79 Ma (sample 9), to as young as 68 Ma (sample 8), but their interpretation as the youngest tectonic events that affected the Ar system in white mica is speculative. We retain however, the ca. 79 Ma age obtained at low temperature steps 1 to 3 in sample 9, confirmed by the argon correlation plot for the same steps (Figure 9b), as a record of Campanian tectonism along the WCFZ. Taken together, the dates obtained from the WCFZ indicate that it was tectonically active since the Valanginian and Aptian (ca. 133 Ma and ca. 124 Ma), experienced a mid-Cretaceous (Albian-Cenomanian) pulse that peaked during the Cenomanian (ca. 96 Ma), with several discrete apparently weak Late Cretaceous pulses (85 Ma, 79 Ma, and 68 Ma).

7.2.2 Bear Foot Thrust and the Valemount Strain Zone

Three samples from the Valemount strain zone (Figure 3; Tables 2, 3) yielded remarkably consistent late Campanian-earliest Maastrichtian ages (73 Ma to 71 Ma). The Ar system in the Neoproterozoic Middle Miette rocks appears to have been almost completely reset by the Late Cretaceous tectonometamorphic event. Only the sericite fusion age of 175 Ma in sample 12 (Figure 10) collected near the eastern margin of the strain zone along Highway 16, suggest a pre-Cretaceous history (may have preserved the memory of the Toarcian tectonism). Thus, the oblique compression identified by van der Driessche and Malusky (1986), and further documented by McDonough and Simony (1989) along the Bear Foot thrust and its footwall, the Valemount strain zone, are contemporaneous with the Campanian major strike-slip displacement along the Tête Jaune Cache-Kinbasket segment of the SRMTSZ (see next section).

Figure 8. ⁴⁰Ar/³⁹Ar age and apparent K/Ca spectra for muscovite crystals from phyllite/phyllonite samples collected along Walker Creek fault zone. Data plotted as in Figure 4.

Figure 9. ⁴⁰Ar/³⁹Ar age and apparent K/Ca spectra for muscovite crystals from phyllite/phyllonite samples collected along the Walker Creek fault zone. Data plotted as in Figure 4.

Figure 10. ⁴⁰Ar/³⁹Ar age and apparent K/Ca spectra for muscovite/sericite crystals from phyllite/phyllonite samples collected from the Valemount strain zone and the Bear Foot thrust. Data plotted as in Figure 4.

Sample 13 was collected near the eastern limit of the Valemount strain zone on the northwest side of Highway 16 from Lower Miette sandstone, and yielded a biotite and a muscovite concentrate. The well-exposed thick-bedded massive sandstone is subhorizontal but overprinted by a 2 to 10 cm spaced subvertical foliation. A biotite separate (YK-G421b, Figure 11a) yields a well-constrained middle to high-temperature plateau age of 87 ± 0.66 Ma (fractions 3 to 8) that corresponds for the most part to an almost constant Ca/K ratio. The muscovite separate (YK-G421m, Figure 11b) from the same sample yields a complex spectrum that may represent Jurassic to Late Cretaceous disturbances of the ca. 1600 Ma detrital muscovite age recognized in other Miette samples.

Sample 14 was collected from the mapped trace of the Bear Foot thrust northwest of the town of Valemount (Appendix 1). A muscovite separate (P59-026), run in 15 steps, yields an IA of 71.9 \pm 0.3 Ma, with an integrated Ca/K ratio of 0.0097 \pm 0.0005. An initial low-temperature age of 68.8 \pm 1.2 Ma is given by fractions 1 to 4 with only 1.7% of the total ³⁹Ar [*S*/(*n*-1) = 0.13]. The dominant proportion of the age spectrum given by fractions 5 to 15 [with 98.3% the total ³⁹Ar, *S*/(*n*-1) = 4.37] yields an average age of 72.0 \pm 0.4 Ma (Figure 11c). The age spectrum of this sample indicates a simple history and yields a confident estimate at 72.0 \pm 0.4 Ma. The Ca/K spectrum is uniformly low and flat indicating a single homogenous phase. On the ³⁹Ar/⁴⁰Ar vs. ³⁶Ar/⁴⁰Ar correlation plot low-temperature fractions 1 to 8 fit a line [*S*/(*n*-2) = 0.66] corresponding to an isochron age of 67.3 \pm 5.9 Ma (which may record a late Maastrichtian tectonic disturbance) with an imprecise initial ⁴⁰Ar/³⁶Ar ratio of 750 \pm 750. The remainder of the points is clustered near the ³⁹Ar/⁴⁰Ar axis.

7.2.3 Shear Zone within the Northern Segment of the Southern Rocky Mountain Trench

The samples collected from the northern segment of the SRMT and its flanks (Figure 3; Tables 2, 3) yielded complex ⁴⁰Ar/³⁹Ar spectra dominated by Cretaceous ages. In the McBride area the age groups (Figures 12–14) are the same as those obtained from the WCFZ. To the south, particularly near Tête Jaune Cache and at the northern end of Kinbasket Lake, an additional Campanian record is dominant.

From sample 15, a muscovite crystal (P57-041), run in 12 steps, gives an IA of 119.4 \pm 0.4 Ma (Figure 12a). The age spectrum begins with an age of 87.9 \pm 5.0 Ma (fraction 1 with 1.7% of the total ³⁹Ar) followed by progressively older ages in successive fractions with increasing temperature up to a final fusion age of 160.5 \pm 5.7 Ma. On the ³⁹Ar/⁴⁰Ar vs. ³⁶Ar/⁴⁰Ar plot, fractions 1 to 3 fit a line corresponding to an isochron age of 96.2 \pm 1.4 Ma, with an initial ⁴⁰Ar/³⁶Ar ratio of 285.8 \pm 6.2. The remainder of the points forms an arcuate pattern below and to the left of this line.

This sample contained ~0.1 mm sized pristine garnet crystals. Two of these crystals were run in single fusion steps to see if the timing of their metamorphic growth could be determined. However, their argon gas yields were very small, and their mean total fusion age of 360 ± 90 Ma is too imprecise to be of much use.

A muscovite crystal (P57-029) from sample 16 run in 11 steps gives an IA of 120.9 ± 0.8 Ma, with an integrated Ca/K ratio of 0.012 ± 0.006 (Figure 12b). The first 2 imprecise and very small steps are followed by a large third step (with 32.6% of the total ³⁹Ar) with an apparent age of 107.1 ± 0.8 Ma. The pattern then climbs to 135.9 ± 1.1 Ma (fractions 9 to 11 with 25.8% of the total ³⁹Ar). A weighted average age of 125 Ma can be calculated from the mid-temperature fractions 4 to 8 (% ³⁹Ar) with similar ages. The large gas evolved in fraction 3, combined with the overall climbing nature of the age spectrum renders low-temperature age information imprecise.

Figure 11. ⁴⁰Ar/³⁹Ar age and apparent K/Ca spectra for muscovite/sericite crystals from phyllite/phyllonite samples collected along the Valemount strain zone. Data plotted as in Figure 4.

Figure 12. ⁴⁰Ar/³⁹Ar age and apparent K/Ca spectra for muscovite crystals from phyllite/phyllonite samples collected along the Southern Rocky Mountain Trench north of McBride. Data plotted as in Figure 4.

From sample 17, a muscovite (P59-007), run in 11 steps yields an IA of 122.3 ± 0.6 Ma from low but nonuniform Ca/K ratios (Figure 12c). At low temperature, a plateau-like segment averaging 113.1 ± 1.4 Ma is formed by fractions 4 to 6 (with 25.2% of the total ³⁹Ar). This is followed by a high-temperature plateaulike portion (fractions 7 to 9) averaging 123.2 ± 3.6 Ma (with 68.1% of the total ³⁹Ar). These ages correspond to a predominantly flat portion of the Ca/K spectrum. At the highest temperature, the pattern steps up steeply to an apparent age of 518 ± 14 Ma (fraction 11) from a mineral phase with significantly higher Ca/K values—likely from a relic phase in the muscovite—that degassed at high temperature. On the ³⁹Ar/⁴⁰Ar vs. ³⁶Ar/⁴⁰Ar correlation plot, fractions 1 to 3 yield an apparent isochron age of 101.5 ± 7.9 Ma with an elevated but imprecise initial ³⁶Ar/⁴⁰Ar ratio of 1450 ± 1840 . Ensuing points are clustered near the ³⁹Ar/⁴⁰Ar axis. Thus, the best estimate for this sample's age is given by the plateau portion averaging 123.2 ± 3.6 Ma that is recorded before degassing of the anomalously old impurity.

A muscovite (P59-020) recovered from sample 18, run in 11 steps, yielded an IA of 99.4 ± 0.9 Ma from a predominantly flat spectrum (with the exception of the penultimate fraction 10) (Figure 12d). Its age spectrum is slightly inclined upwards climbing from a low-temperature age of 93.7 ± 2.0 Ma to the high-temperature age of 106.9 ± 0.9 Ma (fraction 10), and gives a plateau age of 99.3 ± 4 Ma. The very small fraction 11 yields an imprecise final fusion age of 164 ± 47 Ma.

Sample 19 provided both muscovite and very small, pristine, pink, gem quality, garnet crystals. Muscovite (P59-008), run in 13 steps, yielded an IA of 123.3 ± 0.6 Ma, given by relatively uniform low Ca/K values (Figure 13a). The complex low-temperature portion of its age spectrum starts at 55.3 ± 2.7 Ma and climbs to a maximum age of 128.6 ± 0.3 Ma (fraction 5). The pattern oscillates before settling down to a plateau sequence for fractions 9 to 13 with an average age of 128.0 ± 1.5 Ma (with 56.2% of the total ³⁹Ar).

Total-fusion ages for the very small garnet crystals separated from this sample (Table 4) are more precise compared to those attempted for sample 13. The apparent ages and Ca/K ratios show wide variation that probably reflects different inclusions trapped during the growth of the garnet.

Assuming that no argon has been lost from the garnet crystals, their youngest apparent age of 135.2 ± 4.8 Ma may provide a maximum estimate for the growth of the garnet. This age is very close to the muscovite plateau age of 128.0 ± 1.5 Ma from this sample, which implies approximately synchronous blocking of the K-Ar systems in the two minerals. The other garnet crystals yield apparent ages that are significantly older than the associated muscovite. Their apparent ages and Ca/K ratios show wide variation that probably reflects different inclusions trapped during the growth of the garnet as old as ca 2.4 Ga (209-00c), and points to the old ages of their host rocks as indicated by the anomalously old apparent ages in the high-temperature portions of some muscovite age spectra.

Analysis	Age (Ma)	Ca/K
209-00a	135.2 ±4.8	38.7 ±0.3
209-00b	630 ±27	103.2 ±3.8
209-00c	2441 ±42	116.2 ±4.9
209-00d	200.4 ±7.5	150.2 ±1.3
214-00	260 ±16	0.2 ±0.6

Table 4. Total-fusion ages and Ca/K ratios for garnet crystals from sample 19.

Figure 13. ⁴⁰Ar/³⁹Ar age and apparent K/Ca spectra for muscovite and/or biotite or plagioclase crystals from phyllite/phyllonite samples collected along the Southern Rocky Mountain Trench near Tête Jaune Cache. Data plotted as in Figure 4.

Figure 13 (continued). ⁴⁰Ar/³⁹Ar age and apparent K/Ca spectra for muscovite and/or biotite or plagioclase crystals from phyllite/phyllonite samples collected along the Southern Rocky Mountain Trench near Tête Jaune Cache. Data plotted as in Figure 4.
From sample 20 both muscovite and biotite separates were obtained. A muscovite crystal (P57-010), run in 9 steps, gives an IA of 105.9 \pm 0.6 Ma (Figure 13b). From a low-temperature age of 88.8 \pm 1.7 Ma for fractions 1 to 3 (with 9.8% of the total ³⁹Ar), the pattern climbs to an age of 115.0 \pm 0.4 Ma in fraction 8 (with 50% of the total ³⁹Ar). The final fraction has an apparent age of 155 \pm 23 Ma that correspond to a higher Ca/K ratio. Biotite (P57-015) run in 12 steps gives an IA of 101.8 \pm 0.3 Ma (Figure 13b), with an integrated Ca/K ratio of 0.0230 \pm 0.0007. Its age spectrum plunges from 683 \pm 43 Ma down to the minimum of 85.2 \pm 0.06 Ma (fraction 8), before climbing again and finishing at an age of 96.4 \pm 0.5 Ma in the final fraction. Fractions 9 to 12 representing 75% of the total ³⁹Ar form a slightly down-sloping plateau-like segment with a weighted average age of 100.4 \pm 2.6 Ma. The climbing age spectrum of the muscovite contrasts with that of the biotite, which shows excess argon in its low temperature fractions. Nonetheless, the muscovite low-temperature age estimate of 88.8 \pm 1.7 Ma is in fair agreement with the minimum age of 85.2 \pm 0.6 Ma for the biotite, especially considering that both are estimates of the late overprint for the sample.

Five more samples (21 to 25) were collected between Tête Jaune Cache and at the northern end of Kinbasket Lake (Figure 2).

Fractions of muscovite, biotite, and plagioclase have been obtained from sample 21. Muscovite (P59-218), run in 17 steps, yields an IA of 71.4 \pm 0.3 Ma from low and relatively constant Ca/K values indicating a single homogenous phase. Its age spectrum (Figure 13c) shows a subordinate low-temperature plateau averaging 63.7 \pm 0.3 Ma for fractions 1 to 7 (with 2.2% of the total ³⁹Ar). This is followed by a broad plateau averaging 71.9 \pm 0.7 Ma for fractions 8 to 15 (with 83.9% of the total ³⁹Ar). The final fractions 16 and 17 are slightly older. The discrete partitioning of the muscovite data into two separate plateaus as indicated on its age spectrum is also quite apparent on the ³⁹Ar/⁴⁰Ar vs. ³⁶Ar/⁴⁰Ar correlation plot. The plot shows a blow-up near the ³⁹Ar/⁴⁰Ar axis. The upper line shows the data for fractions 1 to 7 that corresponds to an isochron age of 63.7 \pm 0.4 Ma. The isochron for higher temperature data points 8 to 15 plots beneath the low-temperature isochron and yields an isochron age of 71.6 \pm 0.4 Ma, with an imprecise initial ⁴⁰Ar/³⁶Ar ratio of 460 \pm 100. Neither isochron result is significantly different from the ages calculated from their respective plateaus.

Apart from a slightly younger ~64 Ma overprint evident in the low-temperature fractions, the data indicate a relatively undisturbed K-Ar system of this mica, and yield a crystallization estimate of 71.9 ± 0.7 Ma.

Biotite (P59-072), run in 11 steps, yields an IA of 103.1 ± 0.6 Ma from uniform values except the final fraction with a slightly higher ratio. Its age spectrum (Figure 13c) features a starting age of 72.9 ± 4.3 Ma, followed by a maximum age of 113.1 ± 2.0 Ma (fraction 4). This gives way to a plateau averaging 102.4 ± 0.6 Ma for fractions 6 to 10 (with 54.9% of the total ³⁹Ar). The biotite data points are well spread out on the ³⁹Ar/⁴⁰Ar vs. ³⁶Ar/⁴⁰Ar correlation plot. Fractions 4 to 10 (with 87.7% of the total ³⁹Ar) fit a line within experimental uncertainties that corresponds to an isochron age of 101.5 ± 0.6 Ma, with an initial ⁴⁰Ar/³⁶Ar ratio of 327.0 ± 5.0 .

A very small unaltered plagioclase crystal (P59-070), run in six steps, yields an IA of 176.0 ± 11.9 Ma (Figure 13d). Its age spectrum consists of a plateau averaging 98.2 ± 10.1 Ma for fractions 1 to 4 (with 53.2% of the total ³⁹Ar). Fraction 5 jumps to a significantly older age of 656 ± 37 Ma. This high-temperature fraction explains the somewhat high IA and may reflect the presence of relict material within the crystal. The age signature from the major portion of gas from the crystal (plateau age of 98.2 ± 10.1 Ma) is indistinguishable from the biotite age.

The analysis of both biotite and muscovite in this sample allows additional insight into the deformation history and timing of mineral growth in this rock. The age of the biotite is \sim 30 Ma older than that of the associated muscovite. This result is inconsistent with a picture of simple cooling of the rock through the micas' blocking temperatures. Since the closure temperature of muscovite (300–350°C) is significantly higher than biotite's (\sim 250°C), simple slow cooling should render the muscovite's age at least as old as the biotite. Instead, the age pattern of the micas suggests that the biotite, and possibly the plagioclase,

represent earlier phases in the crystallization history of the rock, and confirms that the younger muscovite has grown during later tectonism. Indeed, the age of 72.8 \pm 4.3 Ma recorded from the lowest temperature steps (fractions 1 and 2) of the biotite also appears to be imprinted with the age of the muscovite growth.

Thus, the main muscovite plateau age of 71.9 ± 0.7 Ma provides the best estimate for the age of tectonism associated with the growth of this mineral. The younger age at 63.7 ± 0.3 Ma given by the low-temperature fractions may represent a younger, gentler overprint on this mica.

Two sericite separates were obtained from sample 22. Sericite P54-004, run in six steps, gives an IA of 74.9 \pm 0.3 Ma, with an integrated Ca/K ratio of 0.0033 \pm 0.0009 (s1 in Figure 14a). The age spectrum features a mid-temperature minimum age of 71.7 \pm 0.4 Ma for fractions 3 and 4 (with a total of 20.5% ³⁹Ar). Higher ages of 77.5 \pm 0.3 Ma and 88.2 \pm 6.0 Ma for high and low temperature fractions 1 and 6, respectively, suggest that the sample may contain excess argon. If indeed excess argon has been mixed in with the radiogenic argon of this crystal, the minimum age of 71.7 Ma would provide a maximum age estimate for this sample.

The second sericite grain (P54-028) was run in more detail. The analysis was divided into 30 steps and yields a significantly higher IA of 92.1 \pm 0.3 Ma, but with a similar integrated Ca/K ratio of 0.0058 \pm 0.0004 (s2 in Figure 14a). Its age spectrum also shows signs of excess argon, having low and high temperature age maxima at 1277 \pm 23 Ma (fraction 1) and 3050 \pm 49 Ma (fraction 30), respectively. Its Ca/K spectrum is uniformly low, except for a slight increase in the last three fractions. On the age spectrum there is a low-temperature minimum age of 59.5 \pm 1.6 Ma for fractions 6 to 8 (with a total of 1.4% ³⁹Ar). Following this, the spectrum climbs to a pattern that oscillates between average ages of 75.5 \pm 0.3 Ma (fractions 13, 16, and 17) with a total of 23.5% ³⁹Ar) and a lower age of 71.5 \pm 0.6 Ma (fraction 15). Ensuing fractions then climb at first gradually (fractions 19 to 24) and then more steeply to the high temperature age maximum. On the argon correlation plot the data form a roughly oval distribution, trending from low ³⁹Ar/⁴⁰Ar ratios to the highest ratios in fractions 6 to 8, before plunging to higher ratios of ³⁶Ar/⁴⁰Ar. High-temperature fractions 21 to 30 (with a total of 36.5% of the ³⁹Ar) form an array that trends back to fractions 1 with very low ³⁹Ar/⁴⁰Ar value. This array is linear within experimental uncertainties and corresponds to an isochron age of 77.7 \pm 3.1 Ma, with a very high initial ⁴⁰Ar/³⁶Ar ratio of 7417 \pm 524.

Assuming that excess argon has affected these samples, the lowest points on their age spectra are least affected and can provide approximations to their crystallization ages. Although the two analyses have different quantities of excess argon, as shown by their variable integrated ages, the age of ~71.5 Ma is a mid-temperature low common to both spectra and may be significant. On the other hand, a more refined estimate that corrects for the excess argon (as reflected in the high initial ⁴⁰Ar/³⁶Ar ratio compared to the modern value of 295.5 ["NIER"]),(Nier, 1950; Lee et al., 2006; Quan et al., 2014) and includes more of the overall data, is given by the isochron age of 77.7 ±3.1 Ma. The age of 59.5 ±1.6 Ma taken at very low temperature represents a very small fraction of the age spectrum (<2% 39Ar). This is the lowest apparent age and may represent a mild overprint on the mica.

Sample 23 is a whole rock chip (P57-023) run in 16 steps gives an IA of 138.9 ± 0.9 Ma, with an integrated Ca/K ratio of 48.8 ± 0.5 (Figure 14b). Its age spectrum begins at an extreme average age of 3002 ± 56 Ma (fractions 1 and 2), then descends precipitously to a plateau averaging 85.4 ± 0.5 Ma for fractions 12 to 17 (with 39.2% of the total 39Ar). The high ages in the low-temperature portion of the age spectrum are matched by high Ca/K ratios (usually indicative of liquid inclusions). The Ca/K spectrum drops from a maximum of 388 ± 5 (fractions 5 and 6) to an average of 0.41 ± 0.18 in the plateau steps 12 to 17. By fraction 12, the excess argon characterizing the low to mid-temperature fractions appears to have been quantitatively separated from the high temperature, low Ca/K fractions. Thus, the best estimate of the sample's age is high-temperature plateau result of 85.4 ± 0.5 Ma. On the 39 Ar/ 40 Ar vs. 36 Ar/ 40 Ar plot the high-temperature points are clustered near the 39 Ar/ 40 Ar axis and do not offer additional age information.

Figure 14. ⁴⁰Ar/³⁹Ar age and apparent K/Ca spectra for muscovite/sericite, and K-feldspar crystals or whole rock chips from phyllite/phyllonite samples collected along the Southern Rocky Mountain Trench from Tête Jaune Cache to the northeast side of Kinbasket Lake. Data plotted as in Figure 4.

Figure 14 (continued). ⁴⁰Ar/³⁹Ar age and apparent K/Ca spectra for muscovite/sericite, and K-feldspar crystals or whole rock chips from phyllite/phyllonite samples collected along the Southern Rocky Mountain Trench from Tête Jaune Cache to the northeast side of Kinbasket Lake. Data plotted as in Figure 4.

A sericite grain (P54-034) from sample 24, run in 23 steps, gives an IA of 71.2 ± 0.3 Ma, with an integrated Ca/K ratio of 0.0514 ± 0.0006 (Figure 14c). Its Ca/K spectrum features a high-temperature peak in fraction 21. The complex age spectrum begins at an age of 20 ± 8 Ma and is followed by a climb to a mini-plateau averaging 61.9 ± 0.8 Ma (with 9.1% of the total ³⁹Ar). The remaining fractions oscillate between ages of 68.0 ± 0.7 Ma (fraction 11) and 73.7 ± 0.4 Ma (fraction 16), before making a final climb from fraction 17 to a high-temperature age of 74.3 ± 0.4 Ma (fractions 22 and 23, with 14.3% of the total ³⁹Ar). On the argon correlation plot the data trend to increasing values of ³⁹Ar/⁴⁰Ar until fraction 6. Ensuing points are more radiogenic and cluster below the 62 Ma reference isochron for fractions 3 to 6. After fraction 12, the data partition into 2 separate clusters with apparent ages of 71.8 ± 0.3 Ma (fractions 13 to 15, and 17 to 19); and 73.9 ± 0.4 Ma (fractions 20 to 23 and 16). This pattern may reflect mixing of 72 and 74 Ma components within the sample.

A K-feldspar and a muscovite grain were separated from sample 25. A minute K-feldspar fragment (P57-028), run in 6 steps, gives an IA of 272 ± 16 Ma, with an integrated Ca/K ratio of 1 ± 1 (Figure 14d). Fractions 2 to 6 (with 91.2% of the total ³⁹Ar) yield a plateau age of 239 ± 11 Ma. On the ³⁹Ar/⁴⁰Ar vs. ³⁶Ar/⁴⁰Ar plot all fractions fit a line within experimental uncertainties, which corresponds to an isochron age of 219 ± 28 Ma, with an initial ⁴⁰Ar/³⁶Ar ratio of 618 ± 274 .

The muscovite crystal (P57-025) from the same sample 25, run in 12 steps, gives a much lower IA of 121.8 ± 0.8 Ma, with an integrated Ca/K ratio of 0.181 ± 0.004 (Figure 14d). Its age spectrum is U-shaped given by a mid-temperature plateau averaging 78.2 ± 0.3 Ma for fractions 5 to 8 (with 65.3% of the total ³⁹Ar) between age extremes of 1654 ± 15 Ma (fraction 1) and 243.4 ± 4.1 Ma (fraction 12). On the ³⁹Ar/⁴⁰Ar vs. ³⁶Ar/⁴⁰Ar plot fractions 3 to 8 (with 65.3% of the total ³⁹Ar) yield a slightly younger age of 75.0 ± 0.7 Ma, with an initial ⁴⁰Ar/³⁶Ar ratio of 600 ± 33 . The isochron age of 75 Ma accommodates the excess argon evident in the plateau on the age spectrum and therefore is the preferred estimate for the muscovite's age.

The younger age for the muscovite probably reflects its growth during a rejuvenation of the rock, although the high-temperature portion of its age spectrum climbs to 243 Ma, which is within uncertainty of the K-feldspar plateau age. Accordingly, older ages in the higher temperature portion of the muscovite spectrum may reflect incomplete resetting of its K-Ar system, or the presence of relicts in the crystal. Thus, the age of 240 Ma may be close to the formation (or cooling) age of the rock.

The ~518 Ma muscovite fusion age in sample 17 and the plagioclase high-temperature age of ~656 Ma in sample 21 are the only hints to old protolith ages or pre-Cretaceous tectonothermal events overprinting the analyzed Precambrian to Cambrian phyllite/phyllonite samples in the SRMTSZ. The Middle Triassic feldspar plateau age of 240 Ma was recovered from a garnet micaschist on the east side of Kinbasket Lake (sample 25, Figure 3) interpreted by McDonough and Simony (1989) as part of the metamorphosed cover (Miette Group equivalent) of the Bulldog gneiss. The Jurassic event inferred on either side of the Trench at this latitude appears largely obliterated in the phyllonite samples from the SRMTSZ, with the only hints of Late Jurassic tectonism represented by the muscovite fusion ages of 161 Ma (sample 15) and 155 Ma (sample 20).

Samples from the McBride area show Early to mid-Cretaceous integrated ages: 123 Ma (sample 19); 122 Ma (sample 17); 121 Ma (sample 16); 119 Ma (sample 15); 106 Ma muscovite and 102 Ma biotite (sample 20); 103 Ma (sample 21) and 99 Ma (sample 18) (Figures 12, 13). Although these ages represent total gas ages equivalent to K-Ar dates, we note that the ages vary within a limited range and thus may be geologically significant. In detail, individual spectra show a muscovite high-temperature age of 136 Ma (sample 16) that matches a ⁴⁰Ar/³⁹Ar garnet age of 135 Ma (sample 19), as well as well-defined high temperature plateau ages of 128 Ma (sample 19) and 123 Ma (sample 17). These ages may record distinct Valanginian (136–135 Ma) and Barremian–Aptian (128–123 Ma) events in the SRMTSZ, which appear to be quasi-contemporaneous with those identified in the WCFZ (133 Ma and 124 Ma, respectively).

A mid-Cretaceous event is recorded by the low temperature plateau age of 113 Ma (sample 17) with a low-temperature isochron age of 102 Ma (fractions 1, 2, and 3) as well as the low-temperature age of

107 Ma (sample 16), the well-defined high-temperature biotite plateau age of 102 Ma (sample 21), the full-spectrum, inclined plateau of 99 Ma (sample 18), the well-defined feldspar plateau age of 98 Ma (sample 21), the isochron age of 96 Ma (sample 15), and the 96 Ma high-temperature age of biotite (sample 20). Biotite integrated ages of 102 Ma and 103 Ma from two samples, 30 km apart (sample 20 and 21, respectively) correlate well with the 106 Ma integrated age of muscovite from sample 20, strengthening the argument for a mid-Cretaceous tectonic event. Moreover, the biotite plateau age of 102.4 \pm 0.6 Ma from sample 21 is close to the 100 \pm 2 Ma biotite ⁴⁰Ar/³⁹Ar age reported from the same location by Van der Driessche and Malusky (1986). The mid-Cretaceous tectonic event along SRMTSZ may have started during early Albian (113 Ma) and peaked during the late Albian–Cenomanian (102–98 Ma), as suggested by the best-defined plateau ages identified in samples 18 (Figure 12d), 20, and 21 (Figure 13b–d). These ages are similar to those obtained from the WCFZ (111–96 Ma). The identification of a high-temperature muscovite plateau age of 85 Ma (sample 23) in the SRMTSZ, which is identical with the 85 Ma age recorded in the WCFZ (sample 6), makes a strong argument for a kinematic link between the two lineaments of strain.

A sericite isochron age of 78 Ma (sample 22, Figure 14a), and several muscovite ages including the 75 Ma mid-temperature plateau age (sample 25, Figure 14d), the high-temperature mini-plateau age of 74 Ma (sample 24, Figure 14c), the well-defined 72 Ma muscovite plateau age (sample 21, Figure 13c), and the ca. 71.5 Ma mid-temperature low of two muscovite grains in the same sample (sample 22) indicate middle Campanian to earliest Maastrichtian tectonism along the eastern flank of the SRMTSZ between Tête Jaune Cache and northern Kinbasket Lake. All three phyllonite samples with ages in the 75 to 72 Ma range, yield a narrow error-weighted age estimate of 72.5 \pm 0.3 Ma.

In the case of samples 22 (SRMTSZ) and 11 (VSZ), the ages presumably correspond to the crystallization of the white mica associated with the phyllonitization of the Miette Group. Similar ages recovered from samples 24 (74 Ma) and 25 (75 Ma) in the SRMTSZ on the east (Rockies) side of Kinbasket Lake are associated with the retrograde metamorphic event generating the thin films of sericite on K-feldspar porphyroclasts in gneiss.

This mainly Campanian age range overlaps with previously reported 78 Ma⁴⁰Ar/³⁹Ar muscovite age from Tête Jaune Cache (van den Driessche and Malusky, 1986) and the 72 Ma biotite K-Ar age from the mylonitized Bulldog gneiss (Wanless et al., 1967).

Muscovite low temperature ages of 60 Ma (sample 22, Figure 14a), and the muscovite mini-plateau ages of 62 Ma (samples 24, Figure 14c) and 64 Ma (sample 21, Figure 13c) hint to slightly early Paleocene rejuvenation in the northern SRMTSZ, between Tête Jaune Cache and Kinbasket Lake. To the north along the McBride segment of the Trench, the latest Cretaceous and Paleocene rejuvenation has not been identified, yet.

8 Regional Correlations

The age groups identified in this study (Table 5) are roughly coincident with the five periods of metamorphism, deformation, and plutonism (175–160, 140–120, 110, 100–90, and 75–50 Ma) previously identified in different parts of the southern Omineca belt (Parrish, 1995). More importantly, the same age groups have been recognized in the Selkirk-Monashee-Cariboo (SMC) metamorphic complex of the southeastern Omineca belt, directly south and west of the investigated area (e.g., Sevigny et al., 1990; Colpron et al., 1996; Crowley et al., 2000; Gibson, 2008). In particular, the recovery of roughly the same five age groups (~163, 122, 110, 99–93, and 72–58 Ma; Crowley et al., 2000) from the relatively small Mica Dam area near the SRMTSZ (Figure 15) suggests a direct correlation of the tectonothermal events in the SMC metamorphic complex to the high strain zones overprinting the western Rocky Mountains examined in this study. Moreover, the age groups identified in this study along the northern segment of the SRMTSZ and within the SMC (published data) overlap with the ages of the main pulses of thrusting identified in the adjacent Rocky Mountain fold-and-thrust belt (Pană and van der Pluijm, 2015). Here we review existing dates and explore the possible kinematic links.

Tectonic Lineament	Sample No.	Field Site	Analysis	Pre-Jurassic	Jurassic	Early Cretaceous	Mid-Cretaceous	Late Cr	Late Cretaceous	
							Albian-Cenomanian	Coniacian-Santon.	CampanMaastrich	
Monarch thrust	4	DP11-123	P57-004 (bt)	620 ±58 (isochron)						
			P57-007 (wr)	624.0 ±4.9 (FS)		134.5 ±8.1 (low)				
Moose Pass thrust			P57-009 (am)	326.3 ±1.3 (IA)						
	5	DD11 125h		452 ±5.1 (FS)						
	1		P57-002 (mu)	289.9 ±0.8 (IA)		134.8 ±1.8 (low)				
				421.0 ±4.8 (FS)						
Walker Creek fault zone	6	DP12-110	P59-081 (mu)	279.7 ±3.2 (FS)	171.9 ±0.8 (IA)			85.3 ±0.9 (PA)		
			. ,		184 ±35 (PA)					
	7	DP12-112	P59-068 (mu)			123.7 ±0.7 (PA)	110.9 ±0.6 (min)			
						132.5 ±2.5 (isochron)				
	8	DP11-136	P57-030 (mu)		168.3 ±2.3 (FS)		96.1 ±1.0 (low)		67.8 ±1.4 (1.9 %)	
	9	DP12-70	P59-017 (mu)				95.9 ±5.1 (PA)		79.0 ±0.6 (PA)	
Valemount strain zone	10	DP12-105	P63-055 (mu)				96.5 ±0.8 (FS; 19%)	84.2 ±0.7 (IA)	77.1 ±0.7 (low; 18%)	
	11	DP12-92	P54-019 (ser)						72.6 ±0.4 (PA)	62.3 ±2.4 (mPA)
	12	DP10-4x	P59-080 (mu)	421.0 ±4.8 (high)	175 ±16 (FS, 0.4%)				71.4 ±0.7 (isochron)	
									68.3 ±0.7 (isochron)	
	13	DP16-362	YK-G421(bt)				101 (FS)	87.02 ± 0.66 (PA)		
			YK-G421(mu)		~175 (FS)					
	14	DP12-125	P59-026 (mu)						72.0 ±0.4 (PA)	
									68.8 ±1.1 (mPA), 1.7%)	
Southern Rocky Mountain Trench shear zone	15	DP11-133	P57-041 (mu)		160.5 ±5.7 (high)		96.2 ±1.4 (isochron)	87.9 ±5.0 (lowT, 1.7%)		
			P57-036 (gt)	360 ±90						
	16	DP11-137	P57-029 (mu)			135.9 ±1.1 (high, 25%)	107.1 ±0.8 (low 32%)			
	17	DP12-80	P59-007 (mu)	518 ±14 (FS)		123.2 ±3.6 (PA)	113.1 ±1.4 (low, 25%)			
	18	DP12-77	P59-020 (mu)				99.3 ±4.4 (PA)			
	19	DP12-81	P59-008 (mu)			128.0 ±1.5 (PA)				55.3 ±2.7
			209-00a (gt)	000 000 0444		135.2 ±4.8				
			209-000,b,c (gt)	200; 630; 2441						
	20	DP11-1/6	214-00 (gt)	200	155 ± 23 (biob)		115.0 ±0.4	88.8 ± 1.7 (low T. 0.8%)		
	- 20	DF11-140	P57-015 (ht)		155 ±25 (High)		96.4 ±0.5 (ES)	85.2 +0.6 (low T)		
	21	DP12-94	P59-218 (mu)				00.1 20.0 (1 0)	00.2 20.0 (00 1)	71.9.+0.7 (PA)	637+03(mPA 22%)
			P59-072 (bt)	656 ±37			101.5 ±0.6 (isochron)		72.9 ±4.3 (low)	
			P59-070 (pl)				98.2 ±10.1 (PA)			
	22	DP10-2x	P54-004 (ser)						71.7 ±0.4 (min)	
			P54-028 (ser)						71.5 ±0.6 (min)	59.5 ±1.6 (min, 1.4%)
									77.7 ±3.1 (isochron)	
	23	DP11-173	P57-023 (wr)					85.4 ±0.5 (PA)		
	24	DP10-8x	P54-034 (ser)						74.3 ±0.4 (PA)	61.9 ±0.8 (mPA, 9.1%)
	25	DP11-161	P57-025 (mu)	243.4 ±4.1 (FS)					75.0 ±0.7 (isochron)	
			P57-028 (Kf)	239 ±11 (plateau)						
				219 ±28 (isochron)						

Table 5. Summary of age intervals obtained from phyllonite samples from the three zones of strain concentration at the western margin of the Rocky Mountain fold-and-thrust belt.

Notes: FS - final (fusion) heating step, percentage of ³⁹Ar released; PA - plateau age; mPA - mini plateau age; IA - total gas age; min - minimum age within complex-pattern spectrum; mu - muscovite; ser - sericite; bt - biolite; gt - garnet; Kf - potassic feldspar ; pl - pagioclase; wr - whole rock

Figure 15. Time-correlation of Cretaceous tectonic pulses in the Foreland belt (Rocky Mountain fold-and-thrust belt, red zig-zag lines) with major depositional changes in the foreland basin (Alberta Basin); stratigraphy simplified after the Alberta Table of Formations (<u>https://ags.aer.ca/activities/table-of-formation.html</u>) and Pană et al. (2018a, b). Geological time scale from Gradstein et al. (2020). Tectonic pulses in the Rockies (blue zig-zag lines) from Pană and van der Pluijm (2015).

Directly south and west of the investigated area, on the west side of the SRMTSZ, metamorphic rocks of the Neoproterozoic Horsethief, Kaza, and Cariboo groups, and of the lower Paleozoic Lardeau Group, which encompass parts of the Selkirk, Monashee, and Cariboo mountains have been referred to as the SMC metamorphic complex (Crawley et al., 2000). Xenoblastic monazite grains with highly embayed boundaries of internal zoning indicate significant dissolution and multiple periods of growth. Peak metamorphic conditions were reached in different areas at different times, from the late Early Jurassic to early Cenozoic time (Crowley et al., 2000). In spite of these complexities, a set of northwest trending regional isograds appear roughly parallel to the regional structural grain in the central part of the SMC complex (Figure 15). Within the wide region dominated by the occurrence of sillimanite (generally fibrous, locally coarse-grained and prismatic), the metamorphic grade increases in a southwesterly direction from the sillimanite-in, through the kyanite-out isograd (that coincides for the most part with the first appearance of peraluminous granites), to the metamorphic culmination defined by muscovite-out isograd (i.e., disappearance of muscovite in the presence of quartz) (Figure 15). The isograds are oblique to the F2 folds towards the northern (northern Monashee and southern Cariboo mountains; Currie, 1988; Sevigny and Simony, 1989) and southern (south of the Bigmouth pluton in the Selkirk Mountains; Gibson et al., 2008) extremities of the SMC metamorphic complex (Figure 15) suggesting metamorphic conditions outlasted F2 deformation.

A single Barrovian metamorphic zonation (lack of intersecting isograds) and the apparent geological continuity (same fold generations and the Neoproterozoic Windermere stratigraphy) suggest the Jurassic through Cenozoic tectonothermal events were mostly cospatial.

On the western margin of the Rockies, south of Valemount, although somewhat disturbed by faulting in the vicinity of the SRMTSZ, a regular succession of Barrovian isograds from staurolite-kyanite, garnet, and biotite can be traced in the Neoproterozoic Miette Group and lower Paleozoic strata. The biotite-*in* isograd, although not mapped, in the region northeast of Kinbasket Lake, is mentioned by Charlesworth and Price (1972) just west of the Rocky Mountain divide along Highway 16 between Jasper and Tête Jaune Cache. A second biotite-*in* isograd mapped by McDonough and Murphy (1994) across the garnet isograd in the Miette Group east of Valemount is here interpreted as the result of shear zone metamorphism along the SRMTSZ and VSZ contemporaneous with the greenschist facies retrogression of the orthogneiss and amphibolite-facies paragneiss east of the trench. It is worth noticing that Rocky Mountains stratigraphy is only metamorphosed vis-à-vis the SMC metamorphic complex in the Omineca belt, suggesting limited, probably within 100 km, translations along the SRMT after the Barrovian metamorphic overprint.

8.1.1 Pre-Jurassic Ages

The oldest preserved dates are muscovite plateau ages of 1.65–1.59 Ga in the Miette Group which may record formation and/or cooling of the muscovite-bearing source rocks. The Miette (Windermere) clastic deposits were largely sourced from the adjacent Canadian Shield and the Middle Proterozoic Belt-Purcell Supergroup underlaying Windermere strata to the south. We note that no tectonothermal event contemporaneous with the Miette deposition is known on the immediate Canadian Shield and the muscovite age interval largely overlaps with the North American magmatic gap (NAMG: 1610–1490 Ma). Therefore, the ages of the detrital muscovite in the Miette Group more likely represent cooling ages during the slow uplift and erosion of the adjacent Paleoproterozoic crystalline basement. Because in the nearest exposed Canadian Shield muscovite-bearing rocks are rare, the reworking of muscovite from the Belt-Purcell Supergroup (with an interpreted source in now tectonically removed ca. 1.7 Ga western basement; Ross and Villeneuve, 2003) appears as a reasonable alternative source.

Zircons from the Hugh Allan leucogranitic orthogneiss yielded a colinear array with an upper intercept of 736 Ma and lower intercept of 173 Ma (McDonough and Parish, 1991). The upper intercept age represents an emplacement age in the range of several other felsic and alkaline igneous rocks or carbonatite intrusions, which may record igneous activity associated with extensional tectonics of the protocontinental margin (Parrish, 1995; Millonig et al., 2012). Pre-Jurassic tectonothermal event(s)

affecting the Windermere Supergroup could include late Paleozoic (McDonough and Parrish, 1991) and Triassic (Murphy et al., 1995) events, but their areal extent and intensity is unknown.

An uppermost Mississippian zircon lower intercept age of 326 ± 36 Ma from a foliated leucogranitic Bulldog gneiss sample on the east side of the RM trench (northern Kinbasket Lake) is very close to the Late Devonian–mid-Mississippian (between 335-375 Ma) emplacement age of the granitic protoliths of two orthogneiss bodies near Quesnel Lake in the Barkerville terrane in the western Cariboo Mountains (Mortensen et al., 1987). This time interval partly overlaps with Antler tectonism.

A K-Ar date of 261.4 \pm 5.7 Ma from a phyllitic argillite in the Upper Miette east of the northernmost segment of the SRMT (McMechan and Roddick, 1991) and an imprecise Permian monazite upper intercept age of ca. 276 Ma from the SMC complex in the Mica Dam area (Crowley et al., 2000) are within the range of 279 \pm 25 Ma and 259 \pm 34 Ma zircon lower intercept ages reported from the foliated leucogranitic Bulldog orthogneiss and granodioritic Yellowjacket orthogneiss, respectively (McDonough and Parish, 1991) and may hint to a mid-Permian tectonothermal event. However, allanite from one of the two Yellowjacket samples shows the same degree of Pb loss as zircon, and the similar ²⁰⁷Pb/²⁰⁶Pb ages suggests that Mesozoic metamorphism, although significant, has not been sufficiently severe to reset the allanite U-Pb system.

The ca. 239 Ma feldspar age obtained from the garnet micaschist of the SRMTSZ (sample 25) may point to a Triassic event, also suggested by previous K-Ar dates of ca. 232 Ma, and 226 Ma (McMechan and Roddick, 1991).

8.1.2 Jurassic Tectonism

Several ⁴⁰Ar/³⁹Ar spectra from phyllonites of all three tectonic lineaments investigated for this report show step ages in the ca. 185–155 Ma range and hint to Jurassic tectonism. This Jurassic range of ⁴⁰Ar/³⁹Ar ages encompasses the K-Ar ages of ca. 181 Ma and 178 Ma previously reported from the Rocky Mountains northeast of McBride (McMechan and Roddick, 1991).

The imprecise lower intercept age of 173 Ma obtained from the Hugh Allen orthogneiss was suggested to represent Pb loss associated with a Jurassic tectonometamorphic event (McDonough and Parish, 1991).

In the Omineca belt, the Jurassic tectonothermal event is defined by the initial development of kilometrescale, southwest-verging recumbent, isoclinal folds (F1) and nappes, such as the Scrip nappe in the northern Selkirk and Monashee mountains (Residae and Simony, 1983), the Carnes nappe in the western Selkirk Mountains (Brown and Lane, 1988), and the Riondel nappe in the Kootenay Arc (Höy, 1976). The timing of F1 is uncertain. In the south-central Cariboo Mountains, upright and southwest-verging map-scale folds formed before the 174 ±1 Ma emplacement of the Hobson Lake pluton (Gerasimoff, 1988; Reid et al., 2002), and in the Selkirk Mountains west-verging structures formed between 173-168 Ma (Colpron et al., 1996) or 172–167 Ma (Gibson et al., 2005). Note however that Mortensen et al. (1987) interpreted a U-Pb age of 174 ±4 Ma for metamorphic sphene from one of the orthogneiss bodies in the Barkerville terrane (near Quesnel Lake) as dating the end of the second phase of deformation (F2) in southwestern Cariboo Mountains.

Metamorphic conditions during the Jurassic tectonothermal event increased southeastwards: from nonmetamorphic in the northern Cariboo (Reid et al., 2002), to amphibolite facies in the southern Cariboo and northern Monashee, and to upper amphibolite facies in the northern Selkirk mountains (Colpron et al., 1996; Gibson et al., 2008).

The Late Jurassic tectonothermal event is recorded in the southeastern Cariboo Mountains by a K-Ar hornblende age of 156 Ma and a 154 Ma zircon age from pegmatite intrusions in the Kaza Group (Currie, 1988). In the immediately adjacent Malton complex of the northernmost Monashee Mountains, a K-Ar hornblende age of 156 Ma from a sample with biotite ages of 59 and 54 Ma (McDonough et al., 1991a) suggests that the hornblende age is likely related to Late Jurassic postmetamorphic cooling, whereas the ca. 100 Ma younger biotite age matches the 55 Ma K-Ar biotite cooling dates related to Eocene regional

exhumation of the northern Monashee Mountains (Sevigny et al., 1990). Just south of the Malton basement complex, the ca. 496 Ma Cambrian Little Chicago carbonatite intruded into the Horsethief Creek (Windermere) cover and was subject to a ca. 156 Ma overprint (Millonig et al., 2012). The ca. 156 Ma ages indicate that both basement and cover shared a common Late Jurassic evolution (Figures 15, 16).

Evidence for the Jurassic tectonothermal event appears to have been obliterated during the metamorphic culmination of the northern Monashee Mountains (Sevigny et al., 1990), but it is preserved to the east in the Mica Dam area by 163 Ma garnet, by 166-160 Ma primary monazite and xenotime, and pegmatite emplacement (Crowley et al., 2000). SHRIMP spot dates of 183 Ma (²⁰⁶Pb/²³⁸U) and 173 Ma (²⁰⁸Pb/²³²Th) from monazite inclusions in garnet are the oldest Jurassic ages recovered in this area (Crowley et al., 2000).

Farther south, the Jurassic tectonothermal event is well preserved in the west flank of the Selkirk fan, a peculiar structure in the Selkirk Mountains, where folds on either side of a northwesterly trending fan axis have opposite vergence (Figure 16). At the northern end of the fan, outcrop-scale southwest-verging isoclinal folds (interpreted as F2 folds) developed during the high-grade metamorphic peak (172–167 Ma) and were sealed by the emplacement of the late kinematic 167 Ma Adamant and Bigmouth plutons, and the 156 Ma post F2 tonalite dykes (Gibson et al., 2005). Immediately to the south in the Illecillewaet synclinorium, the same high-grade metamorphism accompanied by southwest-verging folding and thrusting (173–168 Ma) led to rapid decompression (exhumation), which was completed by the late Middle Jurassic time (165 Ma, Colpron et al., 1996).

The 184–155 Ma range of 40 Ar/ 39 Ar dates obtained from phyllonites along the northern segment of the SRMTSZ coincides with the 183–154 Ma range of U-(Th)-Pb dates reported so far from the SMC metamorphic complex of the adjacent eastern Omineca belt.

8.1.3 Early Cretaceous–Early Eocene Tectonism

The garnet age of ca. 135 Ma recognized on the west flank of the SRMTSZ (sample 19) and the ca. 133 Ma muscovite isochron age found in the WCFZ (sample 7) testify for an early Cretaceous tectonic pulse at the western margin of the Rockies (Figures 15, 16) and are similar to Valanginian ages recognized to the south in the SMC metamorphic complex. Thus, in the southern Cariboo Mountains, just west of the Malton basement complex, the amphibolite facies metamorphic peak was attained at ca. 135 \pm 4 Ma (Currie, 1988). In the northern Monashee Mountains, zircon and monazite ages of 136 \pm 2 Ma were reported from leucogranite (Scammell, 1991, 1992, 1993). Farther to southeast in the northern Selkirk Mountains, a zircon lower intercept age of 138 Ma was reported from Trident Mountain syenite (Pell, 1994), while SHRIMP monazite ages of 144 Ma and 131 Ma record Berriasian-Valanginian peak prograde metamorphism in kyanite- and staurolite-bearing micaschists, respectively, in the east flank of the Selkirk fan (Gibson, 2003; Gibson et al., 2004).

The Barremian range of 128–123 Ma⁴⁰Ar/³⁹Ar ages identified in the phyllite and phyllonite of the SRMTSZ and CWFZ (samples 2, 6, 7, and 9) encompass the 125 Ma U-Pb monazite and zircon age of a pegmatitic phase in the southeastern Cariboo Mountains (Currie, 1988). Quasi-contemporaneous is the metamorphic monazite of 129 Ma reported from high-grade metamorphic rocks in the footwall of the Albreda-North Thompson normal fault in the northern Monashee Mountains (J.H. Sevigny, cf. Parrish 1995). An Aptian leucogranite crystallization age of 122 Ma was reported from the Mica Dam area (Crawley et al., 2000), and U-Pb ages (ID-TIMS) in the Barremian-Aptian range have been reported for peak metamorphism of staurolite (127 Ma) and kyanite (124 Ma) bearing migmatite schist units from the east flank of the Selkirk fan (Gibson et al., 2008). This event corresponds to the inferred initiation of the widespread sheets of Cadomin gravel deposition (Figure 15).

Figure 16. Schematic representation of the main phases of Jurassic-Cretaceous tectonic evolution and deformation at the latitude of the Northern Monashee Mountains along the interface between the Foreland and Omineca belts, and the contemporaneous thrusting pulses in the Rocky Mountain fold-and-thrust belt (adapted from Price, 1994). S - Selkirk Mountains, M - Monashee Mountains, C - Cariboo Mountains; Ad - Adamant pluton, Ho -Hobson pluton. SRMTSZ = Southern Rocky Mountain shear zone; WCFZ = Walker Creek fault zone; VSZ = Valmont strain zone, SFA = Selkirk fan axis.

Our mid-Cretaceous age range of 113–96 Ma⁴⁰Ar/³⁹Ar ages, with convincing 102–98 Ma plateau ages obtained from the SRMTSZ (samples 15 to 18, 20, 21), and the ca. 96 Ma ages obtained from WCFZ (samples 6, 7) and VSZ (sample 10), testify for a mid-Cretaceous event (Figure 15), and is quasi-contemporaneous with several ages in the adjacent Omineca hinterland. Thus, directly west of our study area on the southwest side of the Cariboo Mountains, two nearly concordant U-Pb ages of 117 and 114 Ma for monazite from Paleozoic granitic orthogneiss suggest a relatively young shearing and (or) metamorphic event that locally affected the Barkerville terrane (Mortensen et al., 1987).

To the south in the northern Monashee Mountains, the mid-Cretaceous age range of tectonism identified in this study along the western margin of the Rockies encompasses the 100 Ma amphibolite facies metamorphic peak accompanied synkinematic emplacement of dikes, sills, and two-mica granite sheets, the latter up to 50 m thick, within the sillimanite zone of the Adams River area (Sevigny et al., 1990). The synkinematic granites yielded U-Pb zircon ages of 100.4 ± 0.3 Ma and monazites ages of 99 ± 1.0 Ma (Sevigny et al., 1990). In an adjacent area to the south, synmetamorphic peak leucogranite were emplaced at ca. 105–96 Ma (Scammell, 1991, 1992). Farther south, in the Mica Dam area, 110 Ma monazite inclusions in garnet, and 99-93 Ma ages of monazite growth and/or overgrowth apparently record two mid-Cretaceous tectonothermal events (Crowley et al., 2000). A lineated Malton orthogneiss yielded a discordia array with a precise upper intercept age of 1987 Ma and an imprecise lower intercept age of 93 Ma (McDonough and Parrish, 1991). A minor 91 Ma thermal overprint was reported from the northern part of the west flank of the Selkirk fan (Gibson et al., 2005). To the southwest and farther away from the SRMTSZ in the Illecillewaet synclinorium, the evidence for a Cretaceous metamorphic overprint is lacking (Colpron et al., 1996). Instead, farther south along the Kootenay Arc, a well constrained tectonometamorphic event contemporaneous with the mid-Cretaceous tectonic phase described in this report is recorded by mostly lower Paleozoic sequences in front of the Omineca belt by a belt of Barrovian isogrades (peak metamorphism between 143–134 Ma) and by the 118-94 Ma Bayonne plutonic suite (Moynihan, 2012; Moynihan and Pattison, 2013; Webster et al., 2017).

The Coniacian–Santonian ⁴⁰Ar/³⁹Ar ages obtained in this study from phyllonite of the SRMTSZ (89–85 Ma) and WCFZ (85 Ma) are quasi-contemporaneous with a tectonometamorphic event along the eastern side of the SMC metamorphic complex recorded by the 90 Ma growth of secondary monazite in the Mica Dam area (Crowley et al., 2000) and by the 87 Ma and 84 Ma ages of monazite growth during prograde metamorphism in kyanite-bearing migmatitic schists in the east flank of the Selkirk fan (Gibson et al., 2008). A Maastrichtian late overprint is present in phyllonite of the Bear Foot thrust and in its VSZ footwall by the muscovite low-temperature isochron ages of 67.3 Ma (sample 14) and 68.3 (sample 12), respectively. This event may be recorded by the apparent age average of 67.8 Ma from minor fractions 1 and 2 (sample 6) along the WCFZ, but it has no record within the SRMTSZ. If real, the 67–68 Ma time interval encompasses the late Maastrichtian deposition of the Entrance conglomerate directly to the east of the Bear Foot/VSZ, in the Hinton region (Figures 1, 15).

The "important tectonic and metamorphic episode in the late Cretaceous near the Rocky Mountain Trench" inferred by Wanless et al. (1967) and locally documented by Murphy (1990) is fully confirmed by our work.

Similarly, the Campanian–Maastrichtian ⁴⁰Ar/³⁹Ar ages obtained from the SRMTSZ (78–72 Ma), WCFZ (79 Ma), and VSZ (77–68 Ma) have also been reported from the Mica Dam area, where 73 Ma inclusions of monazite in kyanite, a 72 Ma pegmatite dyke emplacement, the 70 Ma growth of monazite and xenotime (Crowley et al., 2000), and from kyanite-bearing migmatitic schists (75, 73, and 71 Ma) on the eastern flank of the Selkirk fan (Gibson et al., 2008).

Finally, phyllonites from the SRMTSZ and VSZ yielded Paleocene–early Eocene ⁴⁰Ar/³⁹Ar ages (64–55 Ma). The 736 Ma Hugh Allen orthogneiss sample also yielded a biotite K-Ar age of 52 Ma, whereas another Hugh Allan gneiss in the trench yielded K-Ar dates of 67 Ma from biotite and 60 Ma from muscovite (McDonough et al, 1991b). This age interval encompasses the 63 Ma second phase of anatectic granite emplacement in the Adams River area of the northern Monashee Mountains (Sevigny et al., 1990)

and is in the range of 66-60 monazite growth, the 64 Ma emplacement of deformed pegmatite, 61 Ma leucosome crystallization, and the 58 Ma postkinematic emplacement of pegmatite in the Mica Dam area (Crowley et al., 2000). Monazite ages of 65 Ma (ID-TIMS) and 62 Ma, and 57 Ma to 56 Ma (SHRIMP) obtained from the migmatitic schists on the east flank of the Selkirk fan may represent final monazite growth during retrograde metamorphism (Gibson et al., 2008), likely contemporaneous with partial chlorite overprint in a domain nearest to the SRMTSZ in the Mica Dam area (Crawley et al., 2000). The 359 Ma Trident Mountain nepheline-syenite located near the SRMTSZ just south of the Mica Dam area yielded a pyrochlor age of 60 Ma (Pell, 1994) and a 15-zircon grain weighted average age of 57 Ma, which indicates late Paleocene metamorphic resetting (Millonig et al., 2012).

Subsequent to the F1 westerly directed folds, nappes, and thrusts, the structures in the eastern Omineca belt were eastward directed and are congruent with those on the western margin of the Rockies. Thus, Cretaceous tectonism is largely responsible for the second generation of structures; specifically, the northeast-verging isoclinal and commonly tight F2 folds developed regionally in the SMC complex. In the southeastern Cariboo Mountains, the F2 formed sometime between the Late Jurassic and Early Cretaceous (160–131 Ma) and were outlasted by the thermal event (Currie, 1988). In the northern Monashee Mountains, F2 developed during peak-metamorphism at 100 Ma and were outlasted by the thermal event (Simony et al., 1980; Sevigny et al., 1989; 1990; Sevigny and Simony, 1989). There, synand postkinematic dikes, sills, and two-mica granites sheets up to 50 m thick, derived by low degree partial melting of Late Proterozoic Horsethief Creek Group metapelites (Sevigny et al., 1990), occur within the sillimanite zone. The garnet- and sillimanite-bearing syn-kinematic granites that locally contain garnet, have 62.5 ± 0.2 Ma zircon ages and 63.4 ± 0.1 Ma monazite ages (Sevigny et al., 1989; 1990). A similar time interval (122–58 Ma) for the F2 folds development was inferred farther south in the Monashee Mountains near Mica Dam (Crawley et al., 2000).

On the west flank of the Selkirk fan, outcrop scale isoclinal folds, interpreted as F2 folds, formed between 172–167 Ma (Gibson et al., 2008). In the east flank of the Selkirk fan, F2 folds are coaxial with late synto post-peak metamorphic northeast-verging mid-Cretaceous F3 folds constrained to 104–84 Ma. These southwest dipping axial surfaces become progressively shallower and are accompanied by thrusts towards the trench, a style of deformation congruent with folding and thrusting in the adjacent Rocky Mountains (e.g., Simony et al., 1980; Gibson et al., 2008).

Thus, the Cretaceous tectonometamorphic events recognized in the SMC metamorphic complex appear to have propagated northward and concentrated into the SRMTSZ and the associated lineaments of strain analyzed in this study.

8.1.4 Exhumation of the Selkirk-Monashee-Cariboo Metamorphic Complex

Although the spatial relationships between the Foreland and Omineca belts may have changed during large-scale Cordilleran latitudinal translations, the Windermere Supergroup unifies the two deformation belts at the margin of ancient North America. The Horsethief and Kaza groups in the SMC, and the Miette Group in the Rockies are partly correlative. The most likely source of sediment for the foreland basin is the Foreland belt and its immediate hinterland, the Omineca belt, specifically the SMC. The orogenic evolution of the SMC is thus very significant to the depositional processes in the Alberta Basin.

At least parts of the SMC complex were buried and metamorphosed at lower to middle crustal levels during the Jurassic. The west flank of the Selkirk fan was exhumed to upper crustal levels (above10–12 km depth) by the late Middle Jurassic and in part reburied during the Cretaceous tectonothermal event (Colpron et al., 1996; Gibson et al., 2008), whereas the eastern flank of the fan remained at deeper crustal levels (>20–30 km depth) throughout the Cretaceous and appears to have been progressively or episodically reworked and recrystallized between the earliest Cretaceous (144 Ma) and Maastrichtian (70 Ma) (Crowley et al., 2000; Gibson et al., 2008).

The rest of the SMC metamorphic complex may have remained at lower to mid-crustal levels throughout the Jurassic to early Cenozoic. The 154 Ma pegmatite emplacement in the southeastern Cariboo Mountains, the 156 Ma hornblende ages in the southeastern Cariboo and northernmost Monashee mountains, and the 163 Ma garnet and 157–155 Ma primary monazite growth in the Mica Dam area testify for at least a mid-crustal level residence into the Late Jurassic. The ca. 76 Ma K-Ar hornblende cooling ages in the northern Monashee Mountains (Sevigny et al., 1990) suggest that this portion of the SMC complex may have been uplifted above the 550°C isotherm only during Campanian time.

The residence of the northern portion of the SMC complex at deep structural levels through Early and mid-Cretaceous time is documented by the 134 Ma peak staurolite-kyanite metamorphism with 125 Ma pegmatite emplacement in the southeastern Cariboo Mountains (Currie, 1988), by a 129 Ma metamorphic monazite from upper amphibolite facies rocks in the northern Monashee Mountains (J.H. Sevigny, cf. Parrish 1995), by the PT estimates for the peak metamorphism that outlasted the 100 Ma sillimanite and garnet-bearing anatectic granitoids in the Adams River area (Sevigny et al., 1990), by U-Pb zircon and monazite ages of 136 ±2 Ma and a 105–96 Ma leucogranite associated with mid-Cretaceous peak metamorphism in an area immediately to the south (Scammell, 1991, 1992, 1993), and finally, the ca. 122 Ma emplacement of leucogranite and the 110-90 Ma polyphase growth or overgrowth of secondary monazite in the Mica Dam area (Crowley et al., 2000).

Postmetamorphic 63 Ma anatectic granitic sheets and dikes which locally contain garnet (Sevigny et al., 1989), and voluminous 67–57 Ma granites (Scammell, 1991, 1992) identified in in the northern Monashee Mountains were emplaced at a higher structural level, but below the 350°C isotherm (muscovite closure temperature), which was reached only at ca. 51 Ma (Sevigny et al., 1990). In the Mica Dam area, multiple phases of monazite growth (73 Ma, 70 Ma, 67 Ma), pegmatite emplacement (64 Ma, 63 Ma and 58 Ma), and crystallization of leucosome (61 Ma) corroborate with the post 73 Ma kyanite growth (age of monazite inclusions in kyanite) and the presence of kyanite in 61 Ma leucosome, thus documenting the residence of the easternmost portion of the SMC complex at mid-crustal levels through the Late Cretaceous-Paleocene (Crowley et al., 2000). All these data indicate a significant pre-Cenozoic orogen on the west side of the SRMT, the immediately adjacent hinterland to the RMFTB.

Late Cretaceous to Eocene postmetamorphic thermal relaxation in the northern Monashee Mountains is tracked by K-Ar cooling ages (mean age and standard deviation) of 76.3 ± 5.8 Ma from hornblende, of 51.4 ± 3.5 Ma from muscovite, and by apatite fission-track ages of 45.0 ± 2.9 Ma (Sevigny et al., 1990).

9 Summary and Conclusions

The spatial and temporal relationships of the tectonic features examined in this study indicate kinematic links between shallow dipping Early Cretaceous thrusts in the Main Ranges (Monarch and Moose Pass thrusts) of the Alberta Rockies and three zones of dextral strike- to oblique-slip lineaments overprinting the western margin of the Rockies (SRMTSZ, WCFZ, and VSZ-Bear Foot thrust). The ca. 135 Ma age of detrital feldspar in the Brazeau Formation testifies for contemporaneous igneous activity in the Cordillera.

The SRMTSZ and WCFZ consist of steeply dipping phyllite and phyllonite belts with conspicuous subhorizontal stretching lineation, whereas the VSZ and Bear Foot thrust include moderately dipping phyllonite with oblique stretching; together they define a Cretaceous zone of transpression and metamorphism along the western margin of the Rocky Mountains, at this latitude. Detailed step-heating ⁴⁰Ar/³⁹Ar analyses unraveled protracted tectonism along the SRMTSZ, and its subsidiaries (WCFZ and VSZ) with apparent episodic pulses throughout Cretaceous time with a subtle early Cenozoic overprint (Table 3):

- Valanginian (ca. 136–133 Ma),
- Aptian (ca. 128–123 Ma),
- Albian–Cenomanian (ca. 113–96 Ma),
- Santonian (ca. 89–85 Ma),

- Campanian–Maastrichtian (ca. 79–68 Ma),
- early Cenozoic local and weaker rejuvenations (ca. 64–55 Ma).

Behind the veil of predominantly Cretaceous ages of tectonism, the analyzed minerals preserved vague memories of older events. The oldest preserved dates are latest Paleoproterozoic muscovite plateau ages of 1.65–1.59 Ga in the Miette Group, which record formation and/or cooling of the muscovite-bearing source rocks. Although less well constrained, Neoproterozoic fusion ages (656–614 Ma) were sporadically identified in phyllonite samples with Miette protoliths and, if geologically meaningful, they may be related to extensional tectonics during the Miette deposition. A step age of 340 Ma and a plateau-like age of 324 Ma may record a Mississippian event, possibly a late phase of the Antler tectonism. Scattered Permian (280 Ma), Triassic (239 Ma and 219 Ma) and Jurassic (175 Ma; 168 Ma; 161 Ma; Figure 16) muscovite fusion dates are unlikely to date significant tectonic events, such as the protolith age of 239 Ma to a Triassic event. Although roughly coincident with the Pliensbachian initial thrusting at the western margin of North America, the interpretation of the muscovite plateau-like age of 188 Ma and the low-temperature date of 184 Ma as meaningful ages remains speculative.

Our structural and geochronological data indicate protracted tectonic activity, which started in *Early* Cretaceous (ca. 135 Ma) as a kilometres-wide zone of orogen-parallel crustal yielding in the northern segment of the SRMT (Figure 16). The shear zone was identified in isolated outcrops of the trench floor along its east side (samples 18, 20, 21; Figure 3), but probably occupies most of the 5-8 km wide trench floor now covered by flat laying Quaternary to Recent sediments (samples 15, 17; Figure 3). The spatial distribution of ages suggests that this zone of strain was wider (samples 7, 16, 17, 19; Figure 3) than the present trench. The Early Cretaceous transpression along the SRMTSZ resulted in eastward thrusting but was apparently limited to the trench proximity and parts of the Main Ranges. Thus, the Monarch and Moose Pass thrusts are kinematically linked to tectonism along the SRMTSZ and are "out-of-sequence" within the RM-FTB, as older thrusts are known to the east (e.g., Late Jurassic Pyramid and Simpson Pass thrusts; Pană and van der Pluijm, 2015). Early Cretaceous tectonic loading in the proto-Rockies is quasicontemporaneous with the extensive sub-Cadomin-sub-Mannville unconformity that records uplift and erosion in the orogenic foreland. Phyllonite ages in the 128–123 Ma range record transpression along the SRMTSZ and WCFZ which likely triggered the rising of the proto-Rockies accompanied and outlasted by vigorous erosion in the mountains and deposition of the extensive Cadomin sheets of gravel in the proximal foreland basin. Ages of 115-111 Ma along the same belts of strain concentration are contemporaneous, within error, with the southward transgression of the Moosebar sea, which suggests that this late Aptian-early Albian event along the western Rockies triggered tectonic loading and downwarping of the North American plate.

Over time, strike-slip strain along the western margin of the Rockies gradually concentrated into narrower mid- and Late Cretaceous belts within the SRMTSZ, the WCFZ and the VSZ. The WCFZ and the VSZ merge with the SRMTSZ and appear to have been tectonically active during different phases of strike-slip displacement along the SRMTSZ. The WCSZ to the east and north records the same tectonic pulses as the SRMTSZ with a weak Campanian–Maastrichtian pulse and no apparent early Cenozoic rejuvenation. In contrast, the VSZ (including the Bear Foot thrust) records only a Late Cretaceous (mainly Campanian–earliest Maastrichtian) pulse of oblique compression—due to either a single tectonic pulse or a pulse that was severe enough to completely obliterate previous records—with minor early Paleocene reactivation.

The mid-Cretaceous tectonic activity along the SRMTSZ (peak at ca. 102–98 Ma) and WCFZ (peak at ca. 96 Ma) is quasi-contemporaneous and kinematically linked to thrusting in the Alberta Rockies at the same latitude (103 Ma Greenock, 99 Ma Snake Indian thrusts; Pană and van der Pluijm, 2015)(Figures 15, 16). The mid-Cretaceous tectonism along the WCFZ extended to the north into the conterminous NRMT, where dextral transpression accompanied by granitoid intrusions apparently built up the Northern Rockies orogenic belt (e.g., McMechan, 2000; Gabrielse et al., 2006). This orogenic phase is contemporaneous with, and likely triggered, the mid-Cenomanian establishment of a vast fluvial system draining from the

Northern Rocky Mountains and depositing proximal alluvial conglomerate and more distal sands of the Dunvegan Formation in the foreland in northeastern British Columbia and northwestern Alberta.

Late Cretaceous tectonism was recorded in all fault and shear zones along the western margin of the Rockies (Figures 15, 16). Campanian–Maastrichtian ⁴⁰Ar/³⁹Ar ages were obtained from the SRMTSZ (78–72 Ma), WCFZ (79 Ma), and VSZ (77–68 Ma). It seems however, that Early and mid-Cretaceous links between the SRMTSZ, WCFZ and Monarch and Moose Pass thrusts of the Rockies were replaced by Campanian kinematic links between the SRMTSZ and the VSZ. A strong, mainly Campanian, pulse was identified in the Bear Foot thrust and the VSZ (73–71 Ma). Oblique compression on these structures was probably driven by the Campanian–Maastrichtian tectonic reactivation of the Tête Jaune Cache–Valemount segment of the SRMTSZ. This event coincides with the emplacement of several major Campanian thrusts in the Front Ranges (e.g., Rocky Pass, Sulphur Mountain, Clearwater, Rundle thrusts) and with the westward transgression of the Bearpaw sea in the Alberta Basin (Pană and van der Pluijm, 2015).

This intriguing synchronicity of tectonic events suggests a kinematic link between oblique compression along the shear- and fault-zone network at the western margin of the Rocky Mountain fold-and-thrust belt and major thrusting events within the belt (Figure 16).

The Cretaceous network of dextral orogen-parallel shear/fault zones in the examined portion of the western Rockies projects southward into the wider Cretaceous tectonometamorphic zone along the SRMTSZ, previously documented on either side of Kinbasket Lake, which encompasses both the western Rockies, and the eastern Omineca belt. We infer that this wide linear zone of mainly Cretaceous strain and metamorphism is part of a complex regional kinematic link between Cretaceous oblique compression in the hinterland and major thrusting in the foreland.

10 References

- Arne, D. and Zentilli, M. (1994): Apatite fission track thermochronology integrated with vitrinite reflectance; Chapter 16 *in* Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations, P.K., Mukhopadhyay and W.G. Dow (ed.), Washington, D.C., American Chemical Society, Symposium Series, v. 570, p. 249–268, <u>doi:10.1021/bk-1994-0570.ch016</u>
- Brown, R.L. and Journeay, J.M. (1987): Tectonic denudation of the Shuswap metamorphic terrane of southeastern British Columbia; Geology, v. 15, p. 142–146.
- Brown, R.L. and Lane L.S. (1988): Tectonic interpretation of west-verging folds in the Selkirk Allochthon of the southern Canadian Cordillera; Canadian Journal of Earth Sciences, v. 25, p. 292– 300.
- Brown, R.L., Journeay, J.M., Lane, L.S., Murphy, D.C. and Rees, C.J. (1986): Obduction, backfolding and piggyback thrusting in the metamorphic hinterland of the southeastern Canadian Cordillera; Journal of Structural Geology, v. 8, p. 255–268.
- Campbell, R.B. (1968): Canoe River (83 D), British Columbia; Geological Survey of Canada, Map 15 1967, scale 1: 253 440.
- Campbell, R.B. (1970): Structural and metamorphic transitions from infrastructure to suprastructure, Cariboo Mountains, British Columbia; Geological Association of Canada, Special Paper 6, p. 67–72.
- Campbell, R.B. (1973): Structural cross-section and tectonic model of the southeastern Canadian Cordillera; Canadian Journal of Earth Sciences, v. 10, p. 1607–1620.
- Campbell, R.B., Mountjoy, E.W. and Young, F.G. (1973): Geology of the McBride map-area, British Columbia; Geological Survey of Canada, Paper 72-35.
- Campbell, R.B., Mountjoy, E.W. and Struik, L.C. (1982): Structural cross-section through south-central Rocky and Cariboo mountains to the Coast Range; Geological Survey of Canada, Open File 844.
- Carr, S.D. (1995): The southern Omineca belt, British Columbia; new perspectives from the Lithoprobe Geoscience Program; Canadian Journal of Earth Science, v. 32, p. 1720–1739.
- Carey, J.A. and Simony, P.S. (1985): Stratigraphy, sedimentology and structure of late Proterozoic Miette Group, Cushing Creek area, British Columbia; Bulletin of Canadian Petroleum Geology, v. 33, p. 184–203.
- Chamberlain, V.E. (1983): The geochemistry and geochronology of the Malton Gneiss Complex, British Columbia; Ph.D. thesis, University of Alberta, Edmonton, Alta., 212 p.
- Chamberlain, V.E. and Lambert, R.ST.J. (1985a): Cordilleria, a newly defined Canadian microcontinent; Nature, v. 314, p. 707–713.
- Chamberlain, V.E. and Lambert, R.ST J. (1985b): Geochemistry and geochronology of the gneisses east of the Southern Rocky Mountain Trench, near Valemount, British Columbia; Canadian Journal of Earth Sciences, v. 22, p. 980–991.
- Chamberlain, V.E., Lambert, R.ST J., Baadsgaard, H. and Gale, N.H. (1979): Geochronology of the Malton Gneiss Complex of British Columbia; *in* Current research, part B; Geological Survey of Canada, Paper 79-1B, p. 45–50.
- Chamberlain, V.E., Lambert, R.ST J. and Holland, J.G. (1980): The Malton Gneiss: Archean gneisses in British Columbia; Precambrian Research, v. 11, p. 297–306.
- Charlesworth, H.A.K. and Price, R.A. (1972): Rocky Mountain Main Ranges to Monashee and Cariboo Mountains-Yellowhead Pass section, 9 p.

- Charlesworth, H.A.K., Weiner, J.L., Akehurst, A.J., Bielenstein, H.U., Evans, C.R., Griffiths, R.E., Remington, D.B., Stauffer, M.R. and Steiner, J. (1967): Precambrian geology of the Jasper region, Alberta; Research Council of Alberta, Bulletin 23.
- Colpron, M., Price, R.A., Archibald, D.A. and Carmichael, D.M. (1996): Middle Jurassic exhumation along the western flank of the Selkirk fan structure: Thermobarometric and thermochronometric constraints from the Illecillewaet synclinorium, southeastern British Columbia; Geological Society of America Bulletin, v. 108, p. 1372–1392, doi:10.1130/0016-7606(1996)108<1372:MJEATW>2.3.CO;2
- Colpron, M., Warren, M.J. and Price, R.A. (1998): Selkirk fan structure, southeastern Canadian Cordillera: Tectonic wedging against an inherited basement ramp; Geological Society of America Bulletin, v. 110, p. 1060–1074, <u>doi:10.1130/0016-7606(1998)110<1060:SFSSCC>2.3.CO;2</u>
- Crowley, J.L., Ghent, E.D., Carr, S.D., Simony, P.S. and Hamilton, M.A. (2000): Multiple thermotectonic events in a continuous metamorphic sequence, Mica Creek area, southeastern Canadian Cordillera; Geol. Mater. Res., 2, p. 1–45.
- Currie, L.D. (1988): Geology of the Allan Creek area, Cariboo Mountains, British Columbia; M.Sc. Thesis, University of Calgary, Alberta.
- Digel, S.G., Ghent, E.D., Carr, S.D. and Simony, P.S. (1998): Early Cretaceous kyanite–sillimanite metamorphism and Paleocene sillimanite overprint near Mount Cheadle, southeastern British Columbia: geometry, geochronology, and metamorphic implications; Canadian Journal of Earth Sciences, v. 35, p. 1070–1087.
- Donelick, R.A. and Beaumont, C. (1990): Late Cretaceous–early Tertiary cooling of the Brazeau thrust sheet, central Foothills, Alberta: Implications for the timing of the end of Laramide thrusting in the region; Geological Association of Canada Programs with Abstracts, v. 15, p. A34.
- Eisbacher, G.H. (1985): Pericollisional strike-slip faults and synorogenic basins, Canadian Cordillera: *in* Strike-slip deformation, basin formation and sedimentation; K.T. Biddle and N. Christie-Blick (ed.) Society of Economic Paleontologists and Mineralogists, Special Publication v. 37, p. 265–282.
- Evenchick, C.A., McMechan, M.E., McNicoll, V.J. and Carr, S.D. (2007): A synthesis of the Jurassic– Cretaceous tectonic evolution of the central and southeastern Canadian Cordillera: Exploring links across the orogen; *in* L.W. Sears, T.A. Harms and C.A. Evenchick (ed.), Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond A. Price: Geological Society of America Special Paper 433, p. 117–145, <u>doi:10.1130/2007.2433(06)</u>
- Ferguson, C.A. and Ross, G.M. (2003): Geology and structure cross-sections, McBride, British Columbia; Geological Survey of Canada, "A" Series Map 2004A (93H08), scale 1:50 000.
- Gabrielse, H. (1985): Major dextral transcurrent displacements along the Northern Rocky Mountain Trench and related lineaments in north-central British Columbia; Geological Society of America Bulletin, v. 96, p. 1–14.
- Gabrielse, H., Murphy, D.C. and Mortensen, J.K. (2006): Cretaceous and Cenozoic dextral orogenparallel displacements, magmatism, and paleogeography, north-central Canadian Cordillera; *in* Paleogeography of the North American Cordillera: Evidence for and against large-scale displacements, J.W. Haggart, R.J. Enkin and J.W.H. Monger (ed.), Geological Association of Canada, Special Paper 46, p. 255–276.
- Gal, L.P. and Ghent, E.D. (1990): Metamorphism in the Solitude Range, southwestern Rocky Mountains, British Columbia: comparison with adjacent Omineca Belt rocks and tectonometamorphic implications for the Purcell Thrust; Canadian Journal of Earth Sciences, v. 27, p. 1511–1520.

- Gal, L.P., Ghent, E.D. and Simony, P.S. (1989): Geology of the northern Solitude Range, western Rocky Mountains, British Columbia; *in* Current Research, part D, Geological Survey of Canada, Paper 89-1D, p. 55–60.
- Gerasimoff, M.D. (1988): The Hobson Lake pluton, Cariboo Mountains, British Columbia, and its significance to Mesozoic and early Cenozoic Cordilleran tectonics; M.Sc. thesis, 196 p., Queens University, Kingston, Ontario,
- Ghent, E.D., and Simony, P.S. (2005): Geometry of isogradic, isothermal, and isobaric surfaces: Interpretation and application; Canadian Mineralogist, v. 43, p. 295–310, <u>doi:10.2113/gscanmin.43.1.295</u>
- Gibson, H.D. (2003): Structural and thermal evolution of the northern Selkirk Mountains, southeastern Canadian Cordillera: Tectonic development of a regional-scale composite structural fan; Ph.D. Thesis, 298 p., Carleton University, Ottawa.
- Gibson, H.D., Carr, S.D., Hamilton, M.A. and Brown, R.L. (2004): Correlations between chemical and age domains in monazite, and metamorphic reactions involving major pelitic phases: An integration of ID-TIMS and SHRIMP geochronology with YTh-U X-ray mapping; Chemical Geology, v. 211, p. 237–260, doi:10.1016/j.chemgeo.2004.06.028
- Gibson, H.D., Brown, R.L. and Carr, S.D. (2005): U-Th-Pb geochronologic constraints on the structural evolution of the Selkirk fan, northern Selkirk Mountains, southern Canadian Cordillera, Journal of Structural Geology, v. 27, p. 1899–1924, <u>doi:10.1016/j.jsg.2005.05.014</u>
- Gibson, D.H., Brown, R.L. and Carr, S.D. (2008): Tectonic evolution of the Selkirk fan, southeastern Canadian Cordillera: A composite Middle Jurassic-Cretaceous orogenic structure; Tectonics, v. 27, p. 1–14.
- Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M. (2020): Geologic time scale 2020; Elsevier, 1280 p.
- Hoffman, J., Hower, J. and Aronson, J.L. (1976): Radiometric dating of the time of thrusting in the disturbed belt of Montana; Geology, v. 4, p. 16–20.
- Höy, T. (1976): Calc-silicate isograds in the Riondel area, southeastern British Columbia; Canadian Journal of Earth Sciences, v. 13, p. 1093–1104, <u>doi:10.1139/e76-112</u>
- Johnson, J. (2006): Extensional shear zones, granitic melts, and linkage of overstepping normal faults bounding the Shuswap metamorphic core complex, British Columbia; Geological Society of America Bulletin, v. 118 (3-4), p. 366–382, doi:10.1130/B25800.1
- Johnson, B.J. and Brown, R.L. (1996): Crustal structure and early Tertiary extensional tectonics of the Omineca belt at 51°N latitude, southern Canadian Cordillera; Canadian Journal of Earth Sciences, v. 33, p. 1596–1611.
- Kalkreuth, W. and McMechan, M. (1988): Burial history and thermal maturity, Rocky Mountain Front Ranges, Foothills, and Foreland, east-central British Columbia and adjacent Alberta, Canada; American Association of Petroleum Geologists Bulletin, v. 72, no. 11, p. 1395–1410.
- Kalkreuth, W. and McMechan, M. (1996): Coal rank and burial history of Cretaceous–Tertiary strata in the Grande Cache and Hinton areas, Alberta, Canada: Implications for fossil fuel exploration; Canadian Journal of Earth Sciences, v. 33, p. 938–957, doi:10.1139/e96-071
- Kendall, B.S., Creaser, R.A., Ross, G.M. and Selby, D. (2004): Constraints on the timing of Marinoan "Snowball Earth" glaciation by ¹⁸⁷Re-¹⁸⁷Os dating of a Neoproterozoic, post-glacial black shale in Western Canada; Earth and Planetary Science Letters, v. 222, p. 729–740.

- Lee, J-Y, Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, H-S., Lee, J.B. and Kim, J.S. (2006): A redetermination of the isotopic abundances of atmospheric Ar; Geochemica and Cosmochemica Acta, v. 70, p. 4507-4512, doi:10.1016/j.gca.2006.06.1563
- Mattauer, M., Collot, B. and van den Driessche, J. (1983): Alpine model for the internal metamorphic zones of the North American Cordillera; Geology, v. 11, p. 11–15.
- McDonough, M.R. (1984): Structural evolution and metamorphism of basement gneisses and Hadrynian cover, Bulldog Creek area, British Columbia; M.Sc. thesis, The University of Calgary, Calgary, Alberta.
- McDonough, M.R. and Simony, P.S. (1984): Basement gneisses and Hadrynian metasediments near Bulldog Creek, Selwyn Range, British Columbia; *in* Current Research, part A; Geological Survey of Canada, Paper 84-1A, p. 99–102.
- McDonough, M.R. and Simony, P.S. (1986): Geology of the northern Selwyn Range, western Main Ranges, Rocky Mountains, British Columbia: preliminary report: *in* Current Research, part A; Geological Survey of Canada, Paper 86-1A, p. 619–626.
- McDonough, M.R. and Simony, P.S. (1988a): Stratigraphy and structure of late Proterozoic Miette Group, northern Selwyn Range, Rocky Mountains, British Columbia; *in* Current Research, part D. Geological Survey of Canada, Paper 88-1D, p. 105–113.
- McDonough, M.R. and Simony, P.S. (1988b): Structural evolution of basement gneisses and Hadrynian cover, Bulldog Creek area, Rocky Mountains, British Columbia; Canadian Journal of Earth Sciences, v. 25, p. 1687–1702.
- McDonough, M.R. and Simony, P.S. (1989): Valemount strain zone: a dextral-oblique thrust system linking the Rocky Mountain and Omineca belts of the southern Canadian Cordillera; Geology, v. 17, p. 237-240.
- McDonough, M.R. and Parrish R.R. (1991): Proterozoic gneisses of the Malton Complex, near Valemount, British Columbia: U–Pb ages and Nd isotopic signatures; Canadian Journal of Earth Sciences, v. 28/8, p. 1202-1216, doi:10.1139/e91-108
- McDonough, M R. and Murphy, D.C. (1994): Geology, Valemount, West of the Sixth Meridian, British Columbia; Geological Survey of Canada, "A" Series Map, 1843A
- McDonough, M.R., Simony, P.S., Morrison, M.L., Oke, C., Sevigny, J.H., Robbins, D.B., Digel, S.G., and Grasby, S.E. (1991a): Howard Creek, British Columbia (83D/7); Geological Survey of Canada, Open File Report, scale 1:50 000.
- McDonough, M.R., Morrison, M.L., Currie, L.D., Walker, R.T., Pell, J. and Murphy, D.C. (1991b): Canoe Mountain, British Columbia (83D/11); Geological Survey of Canada, Preliminary Map 1991, scale 1:50 000.
- McDonough, M.R., Stockmal, G.S., Issler, D.R., Grist, A.M., Zentilli, M. and Archibald, D.A. (1995): Apatite fission track and ⁴⁰Ar-³⁹Ar analysis of the external zone of the Canadian Rockies near Jasper, Alberta: implications for thermal maturity in Proceedings of the oil and gas forum '95, Energy from sediments; J.S. Bell, T.D. Bird, T.L. Hillier and P.L. Greener (ed.), Geological Survey of Canada Open File 3058, p. 83–88.
- McMechan, M.E. (1996): Geology and structure cross-section, Walker Creek, British Columbia; Geological Survey of Canada, Map 1839A, scale 1: 50 000.
- McMechan, M.E. (2000): Walker Creek fault zone, central Rocky Mountains, British Columbia southern continuation of the Northern Rocky Mountain Trench fault zone; Canadian Journal of Earth Sciences, v. 37, p. 1259–1273.

- McMechan, M.E. (2015): The Neoproterozoic succession of the central Rocky Mountains, Canada; Bulletin of Canadian Petroleum Geology, v. 63, p. 243–273.
- McMechan M.E. and Roddick, C. (1991): Seven whole rock radiometric ages from the western Rocky Mountains near 54 N; *in* Radiogenic age and isotopic studies. Report 5; Geological Survey of Canada, Paper 91-2, p. 212–214.
- McMechan, M.E. and Thompson, R.I. (1989): Structural style and history of the Rocky Mountain fold and thrust belt; Chapter 4 *in* Western Canada Sedimentary Basin, A Case History, B.D. Ricketts (ed.), Canadian Society of Petroleum Geologists, p. 47–72.
- McMechan, M.E. and Thompson, R.I. (1992): The Rocky Mountains; Chapter 17, Part E *in* Geology of the Cordilleran Orogen in Canada, Geological Survey of Canada, Geology of Canada, no.4, (also Geological Society of America, The Geology of North America, v. G-2), H. Gabrielse and C.J. Yorath (ed.), p. 635–642.
- McMechan, M.E., Anderson, B., Creaser, R. and Ferri, F. (2006): Clasts from the past: Latest Jurassic– earliest Cretaceous foreland basin conglomerates, northeastern British Columbia and northwest Alberta; Geological Survey of Canada Open-File 5086, 1 sheet.
- Millonig, L.J., Gerdes, A. and Groat, L.A. (2012): U-Th-Pb geochronology of meta-carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: a geodynamic perspective; Lithos, v. 152, p. 202–217.
- Monger, J.W.H., and Price, R.A. (2002): The Canadian Cordillera: Geology and tectonic evolution: Canadian Society of Exploration Geophysicists, Recorder, February 2002, p. 17–36.
- Monger, J.W.H., Price, R.A. and Templeman-Kluit, D.J. (1982): Tectonic accretion and the origin of two major metamorphic and plutonic welts in the Canadian Cordillera; Geology, v. 10, p. 70–75.
- Monger, J.W.H., Woodsworth, G.J., Price, R. A., Clowes, R.N., Ridihough, R.P., Currie, R., Hoy, T., Preto, V.A. G., Simony, P.S., Snavely, P.D. and Yorath, C.J. (1986): Transect B2. Southern Canadian Cordillera, North American continent-ocean transects; Geological Society of America, Decade of North American Geology Program.
- Monger, J.W.H. and Gibson, H.D. (2019): Mesozoic-Cenozoic deformation in the Canadian Cordillera: The record of a "Continental Bulldozer"? Tectonophysics, v. 757, p. 153-167, 12.02.
- Morrison, M.L. (1979): Structure and petrology of the southern portion of the Malton Gneiss, British Columbia; *in* Current research, part B; Geological Survey of Canada, Paper 79-1B, p. 407–410.
- Morrison, M.L. (1982): Structure and petrology of the Malton Gneiss Complex; Ph.D. thesis, The University of Calgary, Calgary, Alberta.
- Mortensen, J.K., Montgomery, J.R. and Fillipone, J. (1987): U-Pb zircon, monazite, and sphene ages for granitic orthogneiss of the Barkerville terrane, east-central British Columbia; Canadian Journal of Earth Sciences, v. 24, p. 1261–1266.
- Mountjoy, E.W. (1980): Mount Robson, Alberta British Columbia; Geological Survey of Canada, Map 1499A, scale 1:250 000.
- Mountjoy, E.W. (1988): The Hugh Allan (Purcell) fault (a low-angle west-dipping thrust) at Hugh Allan Creek, British Columbia; *in* Current Research, Part E, Geological Survey of Canada, Paper 88-1E, p. 97–104.
- Mountjoy, E.W. and Price, R.A. (1985): Jasper, Alberta (83 D/16); Geological Survey of Canada, Map 1611A, scale 1:50 000.

- Mountjoy, E.W. and Forest, R. (1986): Revised structural interpretation, Selwyn Range between Ptarmigan and Hugh Allan creeks, British Columbia – an antiformal stack of thrusts; *in* Current research part A, Geological Survey of Canada, Paper 86-1A, p. 177–183.
- Mountjoy, E.W., Leonard, R. and Forest, R. (1984): Non-basement involvement in the western Main Ranges, Jasper - Valemount, Alberta and British Columbia; Geological Society of America, Abstracts with Programs, 16, p. 602.
- Moynihan, D.P. (2012): Metamorphism and deformation in the central Kootenay Arc, southeastern British Columbia; Ph.D. thesis, University of Calgary.
- Moynihan, D.P. and Pattison, D.R.M. (2013): Barrovian metamorphism in the central Kootenay Arc, British Columbia: petrology and isograd geometry; Canadian Journal of Earth Sciences, v. 50, p. 769–794, doi:10.1139/cjes-2012-0083
- Murphy, D.C. (1984): A note on faulting in the southern Rocky Mountain Trench between McBride and Canoe Reach, British Columbia; *in* Current Research, Part A, Geological Survey of Canada, Paper 84-1A, p. 627–630.
- Murphy, D.C. (1987): Suprastructure/infrastructure transition, east-central Cariboo Mountains, British Columbia: geometry, kinematics and tectonic implications; Journal of Structural Geology, 9, p. 13–29.
- Murphy, D.C. (1990): Direct evidence for dextral strike-slip displacement from mylonites in the southern Rocky Mountain Trench near Valemount, British Columbia; *in* Current Research, Part E, Geological Survey of Canada, Paper 90-1E, p. 91–95.
- Murphy, D.C. (2007): Geology, Canoe River, British Columbia-Alberta; Geological Survey of Canada, "A" Series Map, 2110A (83D), scale 1:250 000.
- Murphy, D.C., Walker, R.T. and Parrish, R.R. (1991): Age and geological setting of Gold Creek gneiss, crystalline basement of the Windermere Supergroup, Cariboo Mountains, British Columbia; Canadian Journal of Earth Sciences, v. 28, p. 1217–1231.
- Murphy, D.C., van der Heyden, P., Parrish, R.R., Klepacki, D.W., McMillan, W., Struik, L.C. and Gabites, J. (1995): New geochronological constraints on Jurassic deformation of the western edge of North America, southeastern Canadian Cordillera; *in* Jurassic Magmatism and Tectonics of the North American Cordillera, D.M. Miller and C. Busby (ed.), Geological Society of America Special Paper 299, p. 159–171, <u>doi:10.1130/SPE299-p159</u>
- Nier, A.O. (1950): A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium; Physical Reviews, v. 77, p. 789–793.
- Nixon, G.T., Archibald, D.A. and Heaman, L.M. (1993): ⁴⁰Ar-³⁹Ar and U-Pb geochronometry of the Polaris Alaskan-type complex, British Columbia: Precise timing of Quesnellia–North America interaction; Geological Association of Canada Annual Meeting Abstracts, v. 18, p. A-76.
- Nixon, G.T., Hammack, J.L., Ash, C.H., Cabri, L.J., Case, G., Connelly, J.N., Heaman, L.M., Laflamme, J.H.G., Nuttall, C., Paterson, W.P.E. and Wong, R.H. (1997): Geology and platinum-group-element mineralization of Alaskan-type ultramafic-mafic complexes in British Columbia: British Columbia Geological Survey, Bulletin 93, 142 p.
- Nixon, G., Scheel, J.E.S., Scoates, J., Friedman, R.M., Wall, C.J., Gabites, J. and Jackson-Brown, S. (2020): Syn-accretionary multi-stage assembly of an Early Jurassic Alaskan-type intrusion in the Canadian Cordillera: U-Pb and ⁴⁰Ar/³⁹Ar geochronology of the Turnagain ultramafic-mafic intrusive complex, Yukon-Tanana terrane; Canadian Journal of Earth Sciences, v. 57, p. 575–600.

- Oke, C. (1982): Structure and metamorphism of Precambrian basement and its cover in the Mount Blackman area, British Columbia; M.Sc. thesis, The University of Calgary, Calgary, Alberta.
- Oke, C. and Simony, P.S. (1981): Basement gneisses of the western Rocky Mountains, Hugh Allan Creek area, British Columbia; *in* Current Research, part A. Geological Survey of Canada, Paper 81-1A, p. 181–184.
- Okulitch, A.V. (1984): The role of the Shuswap Metamorphic Complex in Cordilleran tectonism: a review; Canadian Journal of Earth Sciences, v. 21, p. 1171–1193.
- Pană, D.I. and Elgr, R. (2013): Geological Map of the Alberta Rocky Mountains and Foothills (NTS 82G, 82H, 82J, 82O, 82N, 83B, 83C, 83D, 83F, 83E, and 83L); Energy Resources Conservation Board, ERCB/ AGS Map 560, scale 1:500 000, URL <<u>https://ags.aer.ca/publication/map-560</u>>.
- Pană, D.I. and van der Pluijm, B.A. (2015): Orogenic pulses in the Alberta Rocky Mountains: Radiometric dating of fault gouge from major thrusts and comparison with the regional tectonostratigraphic record; Geological Society of America Bulletin, v. 127, p. 480–502, <u>doi:10.1130/B31069.1</u>
- Pană, D.I., Poulton, T.P. and DuFrane, S.A. (2018a): U-Pb detrital zircon dating supports Early Jurassic initiation of the Cordilleran foreland basin in southwestern Canada; Geological Society of America Bulletin, p. 1–17, doi:10.1130/B31862.1
- Pană, D.I., Poulton, T.P. and Heaman, L.M. (2018b): U-Pb zircon ages of volcanic ashes integrated with ammonite biostratigraphy, Fernie Formation (Jurassic), Western Canada, with implications for Cordilleran-Foreland basin connections and comments on the Jurassic time scale; Bulletin of Canadian Society of Petroleum Geologists, v. 66, no. 3, p. 595–622, URL <<u>https://pubs.geoscienceworld.org/cspg/bcpg/article-pdf/66/3/595/4588416/595.pana66.3.pdf</u>>.
- Parrish, R.R. (1995): Thermal evolution of the southeastern Canadian Cordillera; Canadian Journal of Earth Sciences, v. 32, p. 1618–1642.
- Parrish, R.R. and Armstrong, R.L. (1983): U -Pb zircon age and tectonic significance of gneisses in structural culminations of the Omineca Crystalline Belt, British Columbia; Geological Society of America, Abstracts with Programs, 15, p. 324.
- Pell, J. (1994): Carbonatites, nepheline syenites, kimberlites and related rocks in British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources Bulletin 88, 136 p.
- Pell, J. and Simony, P.S. (1987): New correlations of Hadrynian strata, south-central British Columbia; Canadian Journal of Earth Sciences, v. 24/2, p. 302–313, <u>doi:10.1139/e87-032</u>
- Pope, M.C. and Sears, J.W. (1997): Cassiar platform, north-central British Columbia: a miogeoclinal fragment from Idaho; Geology, v. 25, p. 515–518.
- Price, R.A. (1981): The Cordilleran foreland thrust and fold belt in the southern Canadian Rocky Mountains; *in* Thrust and nappe tectonics, K.R. McClay and N. J. Price (ed.), Geological Society of London, Special Publication 9, p. 427–448.
- Price, R.A. (1986): The southeastern Canadian Cordillera: Thrust faulting, tectonic wedging, and delamination of the lithosphere; Journal of Structural Geology, v. 8, p. 239–254, <u>doi:10.1016/0191-8141(86)90046-5</u>
- Price, R.A. (1994): Cordilleran tectonics and the evolution of the Western Canada Sedimentary Basin;
 Chapter 2 *in* Geological atlas of the Western Canada Sedimentary Basin, G.D. Mossop and
 I. Shetsen (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, p. 13–24.

- Price, R.A. and Carmichael, D.M. (1986): Geometric test for Late Cretaceous Paleogene intracontinental transform faulting in the Canadian Cordillera; Geology, v. 14, p. 468–471.
- Quan, W., Ji, J. and Zhou, J. (2014): Nier value and initial argon isotope ratio of K-Ar, ⁴⁰Ar/³⁹Ar dating technique; Chinese Journal of Geology, v. 50, issue 1, p. 213–221, <u>doi:10.3969/j.issn.0563-5020.2015.01.013</u>
- Quinn, G.M., Hubbard, S.M., van Drecht, R., Guest, B., Matthews, W.A. and Hadlari, T. (2016): Record of orogenic cyclicity in the Alberta foreland basin, Canadian Cordillera; Lithosphere, p. 317–332, <u>doi:10.1130/L531.1</u>
- Raeside, R.P. and Simony, P.S. (1983): Stratigraphy and deformational history of the Scrip Nappe, Monashee Mountains, British Columbia; Canadian Journal of Earth Sciences, v. 20, p. 639–650.
- Raines, M.K., Hubbard, S.M., Kukulski, R.B., Leier, A.L. and Gehrels, G.E. (2013): Sediment dispersal in an evolving foreland: Detrital zircon geochronology from Upper Jurassic and lowermost Cretaceous strata, Alberta Basin, Canada; Geological Society of America Bulletin, v. 125, no. 5-6, p. 741–755, doi:10.1130/B30671.1
- Reid, L.F., Simony, P.S. and Ross, G.M. (2002): Dextral strike-slip faulting in the Cariboo Mountains, British Columbia: a natural example of wrench tectonics in relation to Cordilleran tectonics; Canadian Journal of Earth Sciences, v. 39, p. 953–970, <u>doi:10.1139/E02-017</u>
- Roddick, J.A. (1967): Tintina Trench; Journal of Geology, v. 75, p. 23-33.
- Ross, G.M. (1991): Tectonic setting of the Windermere Supergroup revisited; Geology, v. 19, p. 1125–1128.
- Ross, G.M. and Ferguson, C.A. (2003): Geology and structure cross-sections, Eddy, British Columbia; Geological Survey of Canada, "A" Series Map 1967A (93H01), scale 1:50 000.
- Ross, G.M. and Villeneuve, M. (2003): Provenance of the Mesoproterozoic (1.45 Ga) Belt basin (western North America): another piece in the pre-Rodinia paleogeographic puzzle; Geological Society of America Bulletin, v. 115, no. 10, p. 1191–1217.
- Ross, G. M. and Arnott, R. W. (2007): Regional geology of the Windermere Supergroup, southern Canadian Cordillera and stratigraphic setting of the Castle Creek study area; *in* Atlas of Deep-Water Outcrops, T.H. Nilsen, R.D. Shew, G.S. Steffens and J.R.J. Studlick (ed.), American Association of Petroleum Geologists, Studies in Geology 56, 16 p.
- Scammell, R.J. (1991): Structure and U-Pb geochronometry of the southern Scrip Range, southern Omineca belt, British Columbia: a progress report; Lithoprobe Southern Canadian Cordillera Transect Report, p. 85–96.
- Scammell, R.J. (1992): Composite deformation, intradeformational leucogranite magmatism and thermal history, northern Monashee Mountains, Omineca belt, British Columbia; Lithoprobe Southern Canadian Cordillera Transect Report 24, p. 5–11.
- Scammell, R.J. (1993): Mid-Cretaceous to Tertiary thermotectonic history of former mid-crustal rocks, southern Omineca Belt, Canadian Cordillera; Ph.D. thesis, Queen's University, Kingston, Ontario.
- Sears, J.W. (2001): Emplacement and denudation history of the Lewis-Eldorado thrust slab in the northern Montana Cordillera, USA Implications for steady-state orogenic processes; American Journal of Earth Sciences, v. 301, p. 359–373.
- Sevigny, J. and Simony, P. (1989): Geometric relationship between the Scrip Nappe and metamorphic isograds in the northern Adams River area, Monashee Mountains, British Columbia; Canadian Journal of Earth Sciences, v. 26, p. 606–610.

- Sevigny, J.H., Parrish, R.R. and Ghent, E.D. (1989): Petrogenesis of peraluminous granites, Monashee Mountains, southeastern Canadian Cordillera; Journal of Petrology, v. 30/3, p. 557–581.
- Sevigny, J.H., Parrish, R.R., Donelick, R.A. and Ghent, E.D. (1990): Northern Monashee Mountains, Omineca Crystalline Belt, British Columbia: Timing of metamorphism, anatexis, and tectonic denudation; Geology, v. 18, p. 103–106.
- Shaw, D. (1980): A concordant uranium-lead age for zircons in the Adamant Pluton, British Columbia; *in* Current Research, part C, Geological Survey of Canada, Paper 80-1C, p. 243–246.
- Simony, P.S., Ghent, E.D., Craw, D., Mitchell, W. and Robbins, D.B. (1980): Structural and metamorphic evolution of northeast flank of Shuswap Complex, southern Canoe River area, British Columbia; *in* Cordilleran metamorphic core complexes, M.D. Crittenden, Jr., P.J. Coney and G.H. Davis (ed.), Geological Society of America, Memoir 153, p. 445–461.
- Struik, L.C. (1988): Crustal evolution of the eastern Canadian Cordillera; Tectonics, v. 7, p. 727–747, doi:10.1029/TC007i004p00727
- Struik, L.C. (1993): Intersecting intracontinental Tertiary transform fault systems in the North American Cordillera; Canadian Journal of Earth Sciences, v. 30, p. 1262–1274.
- van den Driessche, J. and Malusky, H. (1986): Mise en évidence d'un cisaillement ductile dextre d'âge crétacé moyen dans la région de Tête Jaune Cache (nord-est du complexe métamorphique Shuswap, Colombie-Britannique); Canadian Journal of Earth Sciences, v. 23, p. 1331–1342.
- van der Pluijm, B.A., Vrolijk, P.J., Pevear, D.R., Hall, C.M. and Solum, J. (2006): Fault dating in the Canadian Rocky Mountains: Evidence for Late Cretaceous and early Eocene orogenic pulses; Geology, v. 34, p. 837–840, <u>doi:10.1130/G22610.1</u>
- Wanless, R.K., Stevens, R.D., Lachance, G.R. and Edmonds, C.M. (1967): Age determinations and geological studies, K-Ar isotopic ages, Report 7; Geological Survey of Canada, Paper 66-17, 120 p.
- Webster, E.R., Pattison, D. and DuFrane, A.S. (2017): Geochronological constraints on magmatism and polyphase deformation and metamorphism in the southern Omineca Belt, British Columbia; Canadian Journal of Earth Sciences, v. 54, p. 529–549, <u>doi:10.1139/cjes-2016-0126</u>

Appendix 1 – Field Photos

Walker Creek Fault Zone

Sample 7

a) McNaughton Formation overprinted by the Walker Creek fault zone at the rip-rap quarry on south side of the Morkill River Forestry Service Road, about 6 km east (see map below) from the Southern Rocky Mountain Trench (UTM 262183E, 5952477N); foliation orientation 228°/87°, lineation 316°/2°; b) detail showing the sampled mica films. See Figure 3 for location.

Topographic map showing the location of sample 8 along Walker Creek fault zone and of sample 15 near the middle of the Southern Rocky Mountain Trench. See Figure 3 for map context.

Southern Rocky Mountain Trench

a) Vertical shear zone within the talweg of Fraser River near the middle of the Trench (see map above) at the bridge of the Morkill River Forestry Service Road (UTM 257293E, 5943432N); b) sampled outcrop on the east bank of Fraser River; foliation orientation 225°/87°. See Figure 3 for location.

Sample 16

Sample 15

a) Kaza Group grit and pelite on west side of the Southern Rocky Mountain Trench, just north of West Twin Creek (UTM 266408E, 5926253N); b) Sample 16 collected from a muscovite/sericite layer with foliation orientation 215°/60° and stretching lineation 300°/4°; c) detail of bedding-parallel foliation with pyrite aggregate up to 2 cm diameter. See Figure 3 for location.

a) Miette grit and pelite near the contact with McNaughton Formation in quarry on east side of the Southern Rocky Mountain Trench near the mouth of Holmes Creek, 150 m east of Highway 16 (UTM 298738E, 5904332N); b) sample 20 collected from a muscovite/sericite layer; orientation of mullions and stretching lineation 132°/5°. See Figure 3 for location.

a) and b) Subhorizontal mullions in Miette grit and sandstone in the east bank of Fraser River at Tetê Jaune Cache; trend of mullions parallels the Trench; c) subvertical foliation (34°/83°) in the Miette phyllite and phyllonite in the west bank of Fraser River at the same location; d) detail of the subhorizontal stretching lineation (300°/5°) parallel to the mullions in coarser grained Miette rocks on the opposite bank of the river; e) detail of the crenulation lineation 320°/40°. See Figure 3 for location.

Shear zones overprinting Miette Group at Tête Jaune Cache, on the east side of the Southern Rocky Mountain Trench: a) site of phyllonite sample, about 50 m from the flat area in the Trench (UTM 337067E, 5872187N); foliation orientation of is 208°/87° and lineation 300°/06°; about 50 m to the east, consistent subhorizontal stretching lineation in both vertical and horizontal shear surfaces in the Miette sandstone and grit (best expressed in the top portion of photo) parallels the local trend of the Trench; c) 50 m farther east, vertical zone of shearing up to 50 m wide, subparallel to the local orientation of the trench; d) 100 m to the east on the north side of Highway 16 to Jasper (UTM 337260E, 5872327N), subhorizontal bedding in Miette Group. See Figure 3 for location.

Sample 24

Retrogressed garnet micaschist with tight isoclinal folds (likely Lower Miette cover of the Yellowjacket orthogneiss in the Bear Foot thrust sheet) collected from mountain slope on east side of the trunk road at the north end of Kinbasket Lake (UTM 356161E, 5848425N).

See Figure 3 for location.

Sample 25

a) Sampled retrogressive shear zone 1–2 m wide (subparallel to the Trench) within garnet micaschist along the east side of Kinbasket Lake (UTM 367977E, 5831437N); the sense of movement, during retrogression and sericite neoformation is uncertain; rocks are overprinted by centimetre-thick gouge layers related to late west dipping normal faults; b) non-retrogressed garnet micaschist and gneiss protolith assigned to the metasedimentary cover (Lower Miette Group) of the Bulldog orthogneiss in the Purcell thrust sheet. See Figure 3 for location.

Valemount Strain Zone

Sample 10

a) Outcrop-scale fold exposed on Small Creek in the "zone of tight folding" that bounds to the northeast the Southern Rocky Mountain Trench and projects into the Valemount strain zone.

b) stretching lineation in the hinge zone is oriented $305^{\circ}/30^{\circ}$; view to northwest. See Figure 3 for location.

Sample 11

a) Subvertical shear zone overprinting Miette Group at Tête Jaune Cache, about 300 m from the flat area in the Rocky Mountain Trench (UTM 337449E, 5872343N); b) detail: foliation orientation 220/87, lineation 318/12; strike-slip structures are locally overprinted by dip-slip displacement. See Figure 3 for location.

a) Subhorizontal mullions (305°/3°) within Miette sandstone and grit along Highway 16 east of Tête Jaune Cache are slightly oblique to the local trend of the Trench and project southeast into the Valemount strain zone; b) between 1.5 -2 km from the Trench, penetrative deformation (phylonite samples in red) grades into discrete deformation shown in c) thickly bedded Miette sandstone and grit is only locally overprinted by steeply dipping shear surfaces with subhorizontal stretching. See Figure 3 for location.

a) View to northeast and to southeast (b) across Valemount strain zone from the site of sample 14 within metres from Bear Foot thrust (traced on top of knob with helicopter in b); c) kinematic indicators in Miette grit below the thrust: foliation 230°/64°; stretching lineation 300°/32° (dextral); d) analyzed sample 19. See Figure 3 for location.

Appendix 2 – Micrographs

Quartz (white & gray) and interstitial Fe-stained dark matrix in fine-grained siltstone. X-axis of photo: 2.3 mm, N+.

McConnell thrust (Sample 3)

A. Large, stubby grain of biotite is interstitial to the matrix quartz and feldspars. X-axis of photo: 0.45 mm, N II.

Brazeau sandstone (Sample 2)

Angular quartz (light) and minor plagioclase (arrow) in wacke. The matrix (cement) consists mostly of finegrained quartz and feldspars. X-axis of photo: 2.3 mm, N+.

B. Slender prisms of biotite (dark brown) are interstitial to the fine-grained matrix of quartz, feldspars and a large carbonate (in center). X-axis of photo: 2.3 mm, N II.

PLATE II

Miette Group (Sample M2)

A. Fine-grained fibrous sericite aggregates (s) are interstitial to quartz, and slender prisms of muscovite (m) parallel the rock fabric. X-axis of photo: 0.45 mm, N+.

B. Fine-grained sericite and interstitial Fe-hydroxide (dark) that defines the rock fabric.X-axis of photo: 0.45 mm, N+.

PLATE III

Valemount Strain Zone (Sample 13)

Muscovite (multi colour) - biotite (brown laths) schist X - axis of photo: 1.6 mm, N+.

Carbonate aggregate (right half of photo) is rimmed by muscovite (green). X - axis of photo: 1.6 mm, N+.

Same as above, with N II. Note brown and tan coloured biotite laths; muscovite grains are colourless.

Biotite veinlet in muscovite-biotite schist X - axis of photo: 0.64 mm, N+.

Appendix 3 – ⁴⁰Ar/³⁹Ar Raw Data

Sample No.	Site	GeochronEx ID
1	DP08-199	YK-223s sericite
2	DP09-548	YK-220 anorthoclase
3	DP07-6A	YK-216 sericite/illite
M1	DP16-359	YK-G418
		YK-220m muscovite
M2	DP08-1202A	YK-220s sericite
40	5540.000	YK-G421m muscovite
13	DP16-362	YK-G421b biotite

 Table 6. Samples analyzed by GeochronEx Analytical Services Ltd.

Sample 1: DP08-199 (YK-223s sericite)

J=0.004425±0.000051

											∑ ³⁹ Ar	Age	
т⁰с	⁴⁰ Ar (STP)	⁴⁰ Ar/ ³⁹ Ar	±1σ	³⁸ Ar/ ³⁹ Ar	±1σ	³⁷ Ar/ ³⁹ Ar	±1σ	³⁶ Ar/ ³⁹ Ar	±1σ	Ca/K	(%)	(Ma)	±1σ
500	316.62*e⁻ ⁹	20.484	0.011	0.0184	0.0001	0.0556	0.0003	0.0032	0.0002	0.20	61.8	149.6	1.7
550	158.56*e ⁻⁹	31.324	0.023	0.0183	0.0003	0.0586	0.0004	0.0049	0.0002	0.21	82.0	224.0	2.5
650	85.47*e⁻ ⁹	34.471	0.027	0.0210	0.0007	0.0827	0.0013	0.0057	0.0004	0.30	91.9	244.5	2.8
750	13.96*e⁻ ⁹	16.971	0.033	0.0256	0.0017	0.1284	0.0021	0.0189	0.0019	0.46	95.2	88.6	4.3
850	4.17*e ⁻⁹	13.821	0.088	0.0501	0.0059	0.1750	0.0075	0.0315	0.0040	0.63	96.4	35.6	9.2
1000	4.54*e⁻ ⁹	9.263	0.021	0.0330	0.0039	0.2229	0.0059	0.0236	0.0041	0.80	98.4	18.3	9.7
1130	3.14 [*] e ⁻⁹	7.847	0.021	0.0269	0.0016	0.1427	0.0022	0.0195	0.0011	0.51	100.0	16.6	2.6

Sample 2: DP09-548 (YK-220 anorthoclase)

 $J{=}0.004412 \pm 0.000051$

											∑ ³⁹ Ar	Age	
T⁰C	⁴⁰ Ar (STP)	⁴⁰ Ar/ ³⁹ Ar	±1σ	³⁸ Ar/ ³⁹ Ar	±1σ	³⁷ Ar/ ³⁹ Ar	±1σ	³⁶ Ar/ ³⁹ Ar	±1σ	Ca/K	(%)	(Ma)	±1σ
500	94.03*e ⁻⁹	21.128	0.011	0.02545	0.00035	0.10348	0.00091	0.01326	0.00015	0.373	4.7	132.0	1.5
600	199.80*e⁻ ⁹	18.338	0.007	0.02313	0.00007	0.19278	0.00019	0.00448	0.00007	0.694	16.2	130.6	1.5
700	176.87*e⁻ ⁹	19.356	0.007	0.02346	0.00011	0.10945	0.00041	0.00362	0.00008	0.394	25.9	140.0	1.6
800	97.48*e⁻ ⁹	20.541	0.013	0.02385	0.00031	0.04115	0.00094	0.00549	0.00023	0.148	30.9	144.6	1.7
900	95.52*e ⁻⁹	20.152	0.017	0.02451	0.00039	0.04612	0.00035	0.00773	0.00035	0.166	36.0	136.9	1.7
1000	177.00*e⁻ ⁹	18.728	0.008	0.02392	0.00009	0.03667	0.00042	0.00490	0.00010	0.132	46.0	132.5	1.5
1065	309.11*e⁻ ⁹	18.573	0.009	0.02325	0.00007	0.03130	0.00013	0.00368	0.00005	0.113	63.6	134.1	1.5
1130	642.88*e ⁻⁹	18.697	0.009	0.02312	0.00003	0.02116	0.00005	0.00256	0.00002	0.076	100.0	137.4	1.5

Sample 3: DP07-6A (YK-216 illite/smectite/sericite)

 $J{=}0.004276 \pm 0.000048$

т⁰с	⁴⁰ Ar (STP)	⁴⁰ Ar/ ³⁹ Ar	±1σ	³⁸ Ar/ ³⁹ Ar	±1σ	³⁷ Ar/ ³⁹ Ar	±1σ	³⁶ Ar/ ³⁹ Ar	±1σ	Ca/K	∑ ³⁹ Ar (%)	Age (Ma)	±1σ
500	717.50*e⁻ ⁹	26.893	0.014	0.02158	0.00006	0.09565	0.00016	0.00428	0.00005	0.344	42.6	187.6	2.0
550	661.88*e⁻ ⁹	37.283	0.013	0.02117	0.00008	0.10071	0.00021	0.00248	0.00002	0.363	71.0	262.0	2.7
600	554.51*e⁻ ⁹	54.203	0.022	0.02134	0.00013	0.12272	0.00043	0.00367	0.00011	0.442	87.3	369.3	3.8
650	320.31*e⁻ ⁹	88.302	0.059	0.02125	0.00026	0.11147	0.00037	0.00565	0.00026	0.401	93.1	568.5	5.5
700	131.21*e⁻ ⁹	97.162	0.126	0.02451	0.00047	0.10136	0.00291	0.01298	0.00123	0.365	95.2	605.8	6.2
800	155.71*e⁻ ⁹	89.770	0.085	0.02113	0.00119	0.09110	0.00228	0.00590	0.00100	0.328	98.0	576.4	5.8
930	87.32*e ⁻⁹	82.498	0.118	0.02488	0.00160	0.08752	0.00339	0.01633	0.00117	0.315	99.7	517.4	5.5
1130	15.58*e ⁻⁹	83.390	0.428	0.04115	0.00638	0.10299	0.01406	0.05287	0.00500	0.371	100.0	459.1	10.1

Total fusion age, TFA= 166.7 ± 1.9 Ma (including J).

т⁰с	³⁶ Ar/ ⁴⁰ Ar	±1σ	⁴⁰ Ar/ ³⁹ Ar	±1σ	³⁸ Ar/ ³⁹ Ar	±1σ	³⁷ Ar/ ³⁹ Ar	±1σ	³⁶ Ar/ ³⁹ Ar	±1σ	Ca/K	∑ ³⁹ Ar	Age (Ma)	±1σ
												(%)		
508	0.002657	0.000215	0.001464	0.00005	0.788417	0.02937	0.175415	0.00654	1.815513	0.06761	0.64	1.3	807.7	34.2
585	0.001224	0.000026	0.007001	0.00014	0.711671	0.01501	0.792921	0.01672	0.174901	0.00370	2.90	3.4	574.4	16.7
692	0.001070	0.000003	0.003180	0.00000	0.128875	0.00033	0.680906	0.00170	0.336490	0.00085	2.49	22.6	1144.9	23.1
782	0.000077	0.000000	0.002875	0.00000	0.019747	0.00007	0.005699	0.00003	0.026676	0.00010	0.02	38.3	1590.0	32.2
833	0.000075	0.000000	0.002594	0.00000	0.019735	0.00004	0.003675	0.00001	0.028848	0.00006	0.01	65.5	1701.6	34.2
885	0.000246	0.000002	0.002526	0.00001	0.036166	0.00023	0.009192	0.00007	0.097300	0.00059	0.03	72.1	1671.1	34.9
940	0.000395	0.000003	0.002446	0.00001	0.050222	0.00038	0.009948	0.00008	0.161617	0.00117	0.04	77.8	1651.7	35.1
987	0.000501	0.000005	0.002407	0.00002	0.059381	0.00053	0.011872	0.00012	0.208101	0.00181	0.04	83.0	1629.5	35.5
1070	0.000685	0.000005	0.002224	0.00001	0.077094	0.00053	0.016140	0.00013	0.307993	0.00208	0.06	90.4	1642.0	34.6
1272	0.000502	0.000003	0.002196	0.00001	0.060799	0.00034	0.013391	0.00009	0.228595	0.00126	0.05	100.0	1729.4	35.9

Sample M1: DP16-359

YK-G418 coarse muscovite

J=0.004172±0.000083

Sample M2: DP08-1202A YK-220m muscovite

J=0.004405±0.000051

T⁰C	⁴⁰ Ar (STP)	⁴⁰ Ar/ ³⁹ Ar	±1σ	³⁸ Ar/ ³⁹ Ar	±1σ	³⁷ Ar/ ³⁹ Ar	±1σ	³⁶ Ar/ ³⁹ Ar	±1σ	Ca/K	∑ ³⁹ Ar (%)	Age (Ma)	±1σ
		,		,		,		,			(,	(
500	57.40*e ⁻	90.421	0.272	0.0232	0.0011	0.0959	0.0018	0.0065	0.0020	0.35	1.9	594.0	6.9
600	332.90*e ⁻⁹	150.816	0.665	0.0199	0.0004	0.1445	0.0011	0.0035	0.0007	0.52	8.4	914.1	9.0
650	484.57*e ⁻⁹	204.953	0.254	0.0194	0.0009	0.0091	0.0007	0.0014	0.0007	0.03	15.4	1159.0	10.0
700	754.55*e⁻ ⁹	250.207	0.221	0.0193	0.0003	0.0039	0.0009	0.0025	0.0003	0.01	24.3	1337.6	11.0
750	1145.80*e ⁻⁹	297.002	0.550	0.0192	0.0010	0.0069	0.0013	0.0046	0.0009	0.02	35.7	1504.5	12.0
800	1810.00*e ⁻⁹	327.934	0.256	0.0216	0.0007	0.0072	0.0016	0.0018	0.0011	0.03	52.0	1610.9	12.4
850	1391.59*e ⁻⁹	321.281	0.323	0.0238	0.0006	0.0091	0.0016	0.0042	0.0008	0.03	64.8	1586.8	12.3
900	1086.99*e ⁻⁹	326.746	0.544	0.0244	0.0013	0.0039	0.0029	0.0275	0.0015	0.01	74.7	1582.1	12.4
950	587.36*e⁻ ⁹	303.792	0.311	0.0183	0.0010	0.0021	0.0015	0.0043	0.0006	0.01	80.4	1528.0	12.0
1000	709.17*e ⁻⁹	306.118	0.365	0.0192	0.0007	0.0034	0.0011	0.0028	0.0008	0,01	87.2	1537.5	12.1
1050	965.67*e⁻ ⁹	339.759	0.317	0.0185	0.0005	0.0026	0.0011	0.0017	0.0004	0.01	95.6	1649.1	12.6
1090	472.26*e ⁻⁹	378.878	0.527	0.0193	0.0012	0.0101	0.0022	0.0132	0.0011	0.04	99.3	1759.4	13.1
1130	88.73*e ⁻⁹	388.870	3.632	0.0309	0.0078	0.0278	0.0151	0.0500	0.0090	0.10	100.0	1756.8	18.5

Total fusion age, TFA= 1486.6 ± 11.7 Ma (including J);

Weighted Mean Plateau Age = 1593.2 ± 12.3 Ma (including J).

1													
											∑ ³⁹ Ar	Age	
т⁰с	⁴⁰ Ar (STP)	⁴⁰ Ar/ ³⁹ Ar	±1σ	³⁸ Ar/ ³⁹ Ar	±1σ	³⁷ Ar/ ³⁹ Ar	±1σ	³⁶ Ar/ ³⁹ Ar	±1σ	Ca/K	(%)	(Ma)	±1σ
500	89.49*e⁻ ⁹	65.356	0.071	0.0226	0.0015	0.2429	0.0016	0.0111	0.0011	0.87	4.7	437.1	4.9
600	388.26*e⁻ ⁹	112.112	0.062	0.0194	0.0004	0.3753	0.0008	0.0036	0.0005	1.35	16.5	720.1	6.9
650	455.56*e⁻ ⁹	150.497	0.093	0.0200	0.0006	0.0277	0.0008	0.0034	0.0006	0.10	26.9	914.7	8.3
700	617.19*e⁻ ⁹	185.914	0.130	0.0191	0.0004	0.0213	0.0008	0.0020	0.0006	0.08	38.3	1079.0	9.4
750	851.17*e⁻ ⁹	227.436	0.194	0.0093	0.0002	0.0120	0.0006	0.0012	0.0007	0.04	51.1	1253.2	10.5
800	905.06*e⁻ ⁹	221.202	0.167	0.0014	0.0000	0.0095	0.0007	0.0008	0.0006	0.03	65.1	1228.8	10.3
850	789.91*e ⁻⁹	219.804	0.176	0.0197	0.0005	0.0095	0.0009	0.0020	0.0007	0.03	77.4	1221.6	10.3
900	487.30*e⁻ ⁹	207.291	0.146	0.0183	0.0006	0.0161	0.0011	0.0041	0.0006	0.06	85.5	1167.6	10.0
950	285.28*e ⁻⁹	185.078	0.202	0.0198	0.0007	0.0177	0.0012	0.0049	0.0010	0.06	90.8	1071.5	9.5
1000	295.21*e ⁻⁹	183.077	0.274	0.0195	0.0005	0.0284	0.0019	0.0105	0.0014	0.10	96.3	1055.3	9.5
1070	166.35*e ⁻⁹	174.852	0.218	0.0199	0.0011	0.0894	0.0018	0.0103	0.0012	0.32	99.5	1018.7	9.2
1130	28.14*e ⁻⁹	205.545	2.703	0.0330	0.0057	0.2267	0.0117	0.0456	0.0132	0.82	100.0	1108.3	22.1

Sample M2: DP08-1202A YK-220s sericite

J=0.004417±0.000051

Total fusion age, TFA= 1066.2 ± 9.3 Ma (including J);

Weighted Mean Plateau Age = 1234.3 ± 10.3 Ma (including J).

Sample	E 13: DE 10	-302	I N- G421	III IIIuscov	lle J	-0.004104		94						
												Cum%	Age	
T⁰C	³⁸ Ar/ ³⁹ Ar	±1σ	³⁷ Ar/ ³⁹ Ar	±1σ	³⁶ Ar/ ³⁹ Ar	±1σ	³⁹ Ar/ ⁴⁰ Ar	±1σ	³⁶ Ar/ ⁴⁰ Ar	±1σ	Ca/K	³⁹ Ar	(Ma)	±1σ
585.2	0.161494	0.006535	0.129187	0.005231	0.153673	0.006220	0.012419	0.000501	0.001908	0.000527	0.47	1.0	245.5	11.1
687.9	0.060650	0.000602	1.882647	0.018144	0.100095	0.000983	0.023029	0.000222	0.002305	0.000023	6.89	4.5	100.2	2.3
765.1	0.135565	0.000870	1.516508	0.009555	0.614862	0.003884	0.005150	0.000032	0.003167	0.000020	5.55	9.8	81.5	2.4
819.7	0.026022	0.000152	0.035301	0.000204	0.056101	0.000317	0.030438	0.000163	0.001708	0.000010	0.13	16.0	118.2	2.5
875.1	0.014965	0.000031	0.015184	0.000029	0.012801	0.000028	0.053911	0.000078	0.000690	0.000001	0.06	47.8	108.2	2.2
927.5	0.015777	0.000033	0.012059	0.000028	0.017366	0.000037	0.040058	0.000057	0.000696	0.000001	0.04	77.1	143.9	2.9
979.3	0.029962	0.000162	0.010946	0.000067	0.089164	0.000460	0.022573	0.000112	0.002013	0.000011	0.04	84.3	129.5	2.7
1033.4	0.054226	0.000403	0.010662	0.000094	0.210027	0.001523	0.012909	0.000093	0.002711	0.000020	0.04	88.6	109.4	2.4
1082.3	0.066084	0.000689	0.011537	0.000135	0.268273	0.002746	0.009957	0.000101	0.002671	0.000028	0.04	92.5	149.0	2.8
1197.6	0.058673	0.000273	0.008840	0.000052	0.235830	0.001054	0.010576	0.000047	0.002494	0.000012	0.03	100.0	175.2	2.9

Sample 13, DD16 362 VK-C-121m muscovite I-0.00/19/1/ 0.00009/

Total fusion age, TFA= 127.4 ± 2.6 Ma (including J);

Sample 13: DP16-362

YK-G421b biotite

J=0.004205+/-0.000084

												Cum%	Age	
т⁰с	³⁸ Ar/ ³⁹ Ar	±1σ	³⁷ Ar/ ³⁹ Ar	±1σ	³⁶ Ar/ ³⁹ Ar	±1σ	³⁹ Ar/ ⁴⁰ Ar	±1σ	³⁶ Ar/ ⁴⁰ Ar	±1σ	Ca/K	³⁹ Ar	(Ma)	±1σ
623.3	0.158901	0.000183	0.027759	0.000037	0.051194	0.000062	0.055302	0.000061	0.002831	0.000677	0.10	9.2	21.8	0.5
720.4	0.048594	0.000050	0.091042	0.000093	0.016054	0.000018	0.073417	0.000066	0.001179	0.000001	0.33	26.2	66.0	1.3
794.6	0.027456	0.000027	0.073112	0.000072	0.011044	0.000013	0.068109	0.000059	0.000752	0.000001	0.27	39.1	84.6	1.7
848.4	0.022660	0.000020	0.003889	0.000006	0.007931	0.000009	0.071094	0.000038	0.000564	0.000000	0.01	48.5	86.8	1.7
921.3	0.022681	0.000020	0.003915	0.000008	0.007205	0.000010	0.070771	0.000041	0.000510	0.000000	0.01	56.8	88.9	1.8
1014.9	0.021617	0.000018	0.003515	0.000006	0.006410	0.000009	0.074322	0.000047	0.000476	0.000000	0.01	68.5	85.7	1.7
1071.3	0.024979	0.000020	0.004598	0.000006	0.009637	0.000011	0.068724	0.000043	0.000662	0.000001	0.02	81.9	86.7	1.7
1145.5	0.022906	0.000021	0.004430	0.000007	0.010374	0.000013	0.067577	0.000036	0.000701	0.000001	0.02	91.3	86.9	1.7
1186.2	0.023905	0.000024	0.004628	0.000009	0.021714	0.000023	0.053787	0.000032	0.001168	0.000001	0.02	98.9	90.0	1.8
1240.8	0.024195	0.000066	0.013099	0.000041	0.026088	0.000066	0.046712	0.000093	0.001219	0.000003	0.05	100.0	100.9	2.0

Total fusion age, TFA= 77.5 ± 1.6 Ma (including J);

Site	Sample No.	TerraChron ID
DP10-2x	22	P54-004
		P54-028
DP10-4x	11	P54-019
DP10-8x	24	P54-034
DP11-123	4	P57-004
		P57-007
DP11-125b	5	P57-002
		P57-009
DP11-133	15	P57-041
		P57-036
DP11-136	8	P57-030
DP11-137	16	P57-029
DP11-146	20	P57-015
		P57-010
DP11-161	25	P57-028
		P57-025
DP11-173	23	P57-023
DP12-70	9	P59-017
DP12-77	18	P59-020
DP12-80	17	P59-007
DP12-81	19	P59-008
		P59-209
DP12-87b	14	P59-026
DP12-94	21	P59-070
		P59-072
		P59-218
DP12-105	10	P63-055
DP12-110	6	P59-081
DP12-125	12	P59-080

Table 7. Samples analyzed by TerraChron Corp.

DP10-2x P54-004 sericite

No		Name			Tem	р	Cum	39K				Ag	е					40A	r*	/ 3	9K		
1	4-01	1.4W	22-	Ma		1	0.3	4408		77.	478	±	0	.309	Ma			6.9	29	±	0	.03	
2	4-02	2.0₩	22-	Ma		3	0.4	2302		74.	415	±	0	.692	Ma			6.6	49	±	0	.06	
3	4-03	2.5W	22-	Ma		4	0.4	9038		72.	106	±	0	.613	Ma			6.4	39	±	0	.06	
4	4-04	4.5W	20k	Hz		5	0.6	2753		71.	552	±	0	.389	Ma			6.3	88	±	0	.04	
5	4-05	4.5W	20k	Hz		6	0.9	9526		74.	376	±	0	.145	Ma			6.6	46	±	0	.01	
6	4-06	5.OW	20k	Hz		7	1.0	0000		88.	198	±	6	.002	Ma			7.9	11	±	0	.55	
No		Nomo			C	260		Л	07.00	/ 3	067.00				1 (7 2 20	\ ~ ~ ~	/~			2702	/ >	OV
1	1 01	Name 1 Aw	22	Ma	Cum	202		4 000	UAL 1 10	/ 3 > _	DOAL	267	21		0 /1	JAL	100/ 110	g	1	110)/Ca ⊥	/ J 0 1	9n 01 m
1 2	4-01	1.4W 2.0₩	22-	Ma Ma	0.5	0550		2167	1.40 1.60) <u>+</u>	26	725	· ∠ ⊥ 7 2		0.41 1 71	2-00 2-00	ノエム ト1 つ		⊥. 1	110	⊥ ⊥	2 0	91 III 90 m
2	4-02	2.0W	22-	Ma	0.5	6550		1022	4.00) <u> </u>	20	050	.13		4./1)10		⊥. 1	20Z	工 上	2.0	99 III 06 m
3	4-03	Z.JW	22-	Ma II-	0.0	0024 7025		1402	4./0	5 I	2	932	.00		1.21				⊥. ⊃	499	т ,	1.J	00 m
4	4-04	4.5W	ZUK	HZ	0.7	1633		1483	5.63) ±	3	547	.23		1./1				۷.	014	±	0.5	3∠ m 52 m
5	4-05	4.5W	20K	HZ	0.9	8553		2183	9.39) ±	2	462	.51		3.21				⊥.	8/3	±	0.1	53 m
6	4-06	5.0W	20 k	Hz	1.0	0000		507	1./9) ±	5	633	.05		2.21	5-00)13		0.	421	±	39.5	00 m
No		38C	1 /	39K			4	0Ar*	Vol	. cc	NTP	°∕a			2	Atm	Cor	nt		F	1		F2
1	1	.996 :	±	0.306	5 m	22	6.44	±	1.3	32 E	-12	(0.	68)		3.5	9428	5	-0	.000	0001	0.0	00354
2	-315	.874 :	± 80	8.328	3 u	4	9.86	±	0.4	8 E	3-12	: (1.	,)응)	(0.93	3298	0	-0	.000	0001	0.0	01792
3	1	.927	+	0.572	? m	4	1.19	±	0.4	1 F	-12	(1.	0응)		2.8	5208		-0	.000	0001	0.0	00651
4	1	. 81.3	+	0.365	5 m	8	3.22	+	0.6	 50 F	1-12	(0.	7응)		1.9	9189		-0	.000	0001	0.0	01278
5	1	541 -	+	0 127	7 m	23	2 12	+	1 2	- °,	1-12	· (0	. e, 5응)		1 3	5319		-0		0001	0 0	01692
6	4	333 -	+	8 413	2 m	20	3 56	+	0 2	יביים. ארו די	1-12	· (6	98)		5 80	2638	2	-0		2000	0.0	00071
0	1	• • • • • •		0.110	,			-	0.2	.0 1			•••	,		•••	- 00	0	0	••••	0000	0.0	000/1
Inte	egrate	ed Rea	sult	s:																			
7	_	00 1 4 1	E 1	0 7)) E			Maan	7		_		0.0	220		,		1 C C		Me	()	0 0 E V	
Age	=	92.143	ΣΞ	0.3	555	Mawc	•	Mean	A	lge	=	-	00.	220	Ξ	4	247.	.100		ма	(2	823)	
40A:	r* / 3	39K =		8.275	5 ±	0.	014					То	tal	39K	Vo	L	=	= 3	.45	35E-	-001	0 cc	NTP/g
												То	tal	40A	r* 1	Vol	=	2.8	58	± 0	.004	E-9	
(402	Ar / 3	36Ar):	sam	= 110	41.	59 ±	32	8.64				То	tal	Atm	1 4 O Z	Ar V	Vol	= 7	.85	80E-	-001	1 ccl	NTP/g
(36)	Ar / ·	40Ar):	sam	= 0.0	000	9057	±0.	0000	0376	5		Со	rr	36/4	3 O &	39,	/40	rat	ios	; =-(0.44	6581	
(372	Ar / ·	40Ar):	sam	= 0.0	003	6895	±0.	0000	2281	_		Со	rr	36/4	3 O &	37	/40	rat	ios	; =-(0.01	0557	
(39)	Ar / ·	40Ar):	sam	= 0.1	176	1865	±0.	0001	4432	2		Со	rr	37/4	3 O	39,	/40	rat	ios	= 0	.012	315	
37Ca	a / 3	9K =	3.1	37 ±	0.1	94 E	-3					38	Cl	/ 39	K =	1.	923	± 0	.08	57 E-	-3		
Ca	/ K	= !	5.75	6 ± 0	.35	6 E-	3					Cl	/ :	K	= -	4.03	38 ±	Ł 0.	182	2 E-4	4		
F1 =	= -2.2	238 E-	-6									F2	=	1.13	5 E-	-3							

DP10-2x P54-028 Sericite

No	Name		Temp	Cum 39K		Age	e		40Ar* / 39K	
1	28-01 1.5W	23-M	4	0.00048	1.277	±	0.023	Ga	162.532 \pm	4.15
2	28-02 1.5W	23-M	5	0.00272	534.497	±	5.732	Ma	54.450 \pm	0.67
3	28-03 1.8W	23-M	6	0.00795	208.194	±	2.122	Ma	19.315 \pm	0.21
4	28-04 2.0W	23-M	7	0.01222	95.337	±	2.820	Ma	$8.569 \ \pm$	0.26
5	28-05 2.1W	23-M	8	0.02124	81.329	±	1.681	Ma	7.281 \pm	0.15
6	28-06 2.1W	23-M	9	0.02493	60.256	±	4.043	Ma	5.363 \pm	0.37
7	28-07 2.2W	23-M	10	0.02978	57.303	±	2.544	Ma	5.096 \pm	0.23
8	28-08 2.2W	23-M	11	0.03487	61.018	±	2.220	Ma	5.432 \pm	0.20
9	28-09 2.5W	24-M	13	0.04832	65.335	±	0.910	Ma	5.823 \pm	0.08
10	28-10 2.5W	24-M	14	0.05294	64.174	±	3.102	Ma	5.718 \pm	0.28
11	28-11 2.8W	24-M	15	0.06917	66.935	±	0.864	Ma	5.969 \pm	0.08
12	28-12 3.5W	24-M	16	0.08509	71.111	±	0.617	Ma	6.348 \pm	0.06
13	28-13 4.0W	24-M	17	0.11128	75.134	±	0.563	Ma	6.715 ±	0.05
14	28-14 4.5W	20kH	18	0.15775	73.268	±	0.518	Ma	6.545 \pm	0.05
15	28-15 4.5W	20kH	19	0.19968	71.484	±	0.539	Ma	6.382 ±	0.05
16	28-16 4.5W	20kH	20	0.27999	75.635	±	0.324	Ma	6.761 ±	0.03
17	28-17 4.5W	20kH	21	0.40870	75.552	±	0.398	Ma	6.753 \pm	0.04
18	28-18 4.5W	20kH	22	0.49581	73.075	±	0.381	Ma	6.527 \pm	0.03
19	28-19 4.5W	20kH	23	0.59547	81.066	±	0.379	Ma	7.257 \pm	0.03
20	28-20 4.5W	20kH	24	0.63552	79.554	±	0.325	Ma	7.119 \pm	0.03
21	28-21 4.5W	20kH	25	0.69581	84.940	±	0.281	Ma	7.612 ±	0.03
22	28-22 4.5W	20kH	26	0.76886	83.661	±	0.240	Ma	7.495 \pm	0.02
23	28-23 4.5W	20kH	27	0.81369	85.897	±	0.333	Ma	7.700 \pm	0.03
24	28-24 4.5W	20kH	28	0.85213	87.690	±	0.405	Ma	7.865 \pm	0.04
25	28-25 4.5W	20kH	29	0.88105	96.334	±	0.397	Ma	8.661 ±	0.04
26	28-26 4.5W	20kH	30	0.93537	103.601	±	0.246	Ma	9.333 \pm	0.02
27	28-27 5.0W	20kH	31	0.97045	148.802	±	0.540	Ma	13.576 \pm	0.05
28	28-28 6.0W	27-M	32	0.99909	196.376	±	0.552	Ma	$18.158 \ \pm$	0.05
29	28-29 7.0W	20kH	33	0.99989	2.090	±	0.013	Ga	$344.973 \ \pm$	3.62
30	28-30 6.0W	20kH	34	1.00000	3.050	±	0.049	Ga	$698.295 \hspace{0.1 in} \pm \hspace{0.1 in}$	23.32

DP10-2x P54-028 Sericite

No	Name		Cum 36S	40Ar / 3	6Ar		40ArAcc/	/g 3	7C	a / 39K
1	28-01 1.5W	23-M	0.02021	5259.64	±	1294.57	1.6E-0012	22.261	±	95.036 m
2	28-02 1.5W	23-M	0.06923	3527.75	±	434.37	3.9E-0012	12.222	±	11.592 m
3	28-03 1.8W	23-M	0.11189	3373.05	±	257.08	3.4E-0012	21.269	±	6.958 m
4	28-04 2.0W	23-M	0.13116	2760.98	±	684.66	1.5E-0012	6.047	±	6.522 m
5	28-05 2.1W	23-M	0.15276	4242.53	±	1150.73	1.7E-0012	7.167	±	2.533 m
6	28-06 2.1W	23-M	0.16947	1834.29	±	649.33	1.3E-0012	8.364	±	7.553 m
7	28-07 2.2W	23-M	0.18349	2584.02	±	895.83	1.1E-0012	14.924	±	3.855 m
8	28-08 2.2W	23-M	0.19747	2863.20	±	915.43	1.1E-0012	9.946	±	5.363 m
9	28-09 2.5W	24-M	0.22494	4000.66	±	689.98	2.2E-0012	8.906	±	1.735 m
10	28-10 2.5W	24-M	0.23709	3113.96	±	1453.40	9.5E-0013	5.172	±	5.622 m
11	28-11 2.8W	24-M	0.25630	6848.61	±	1946.17	1.5E-0012	6.044	±	1.807 m
12	28-12 3.5W	24-M	0.26145	25785.11	±	16946.84	4.0E-0013	1.562	±	1.488 m
13	28-13 4.0W	24-M	0.30608	5412.61	±	614.23	3.5E-0012	2.917	±	1.327 m
14	28-14 4.5W	20kH	0.41845	3810.94	±	262.14	8.8E-0012	8.054	±	0.866 m
15	28-15 4.5W	20kH	0.49244	4992.50	±	555.95	5.8E-0012	2.140	±	1.176 m
16	28-16 4.5W	20kH	0.54087	14855.23	±	1856.39	3.8E-0012	1.264	±	0.317 m
17	28-17 4.5W	20kH	0.63269	12589.31	±	1025.52	7.2E-0012	1.067	±	0.221 m
18	28-18 4.5W	20kH	0.69360	12418.93	±	1629.75	4.8E-0012	1.138	±	0.300 m
19	28-19 4.5W	20kH	0.75504	15581.76	±	1511.73	4.8E-0012	1.842	±	0.515 m
20	28-20 4.5W	20kH	0.77010	24888.43	±	7568.54	1.2E-0012	2.459	±	2.463 m
21	28-21 4.5W	20kH	0.78033	58563.29	±	27759.95	8.0E-0013	1.425	±	0.579 m
22	28-22 4.5W	20kH	0.78913	81084.16	±	45147.73	6.9E-0013	1.464	±	0.395 m
23	28-23 4.5W	20kH	0.79248	134058.50	±	196599.62	2.6E-0013	1.806	±	0.676 m
24	28-24 4.5W	20kH	0.80359	35633.36	±	17944.13	8.7E-0013	1.917	±	0.458 m
25	28-25 4.5W	20kH	0.81287	35350.97	±	16026.80	7.3E-0013	4.076	±	0.873 m
26	28-26 4.5W	20kH	0.83366	31958.60	±	6743.71	1.6E-0012	4.856	±	0.430 m
27	28-27 5.0W	20kH	0.87372	15734.79	±	1392.19	3.1E-0012	4.883	±	0.668 m
28	28-28 6.0W	27-M	0.93117	12052.05	±	1093.06	4.5E-0012	12.220	±	0.858 m
29	28-29 7.0W	20kH	0.98493	6942.22	±	658.02	4.2E-0012	88.563	±	56.810 m
30	28-30 6.0W	20kH	1.00000	6980.17	±	1513.48	1.2E-0012	-45.812	±	166.152 m

DP10-2x P54-028 Sericite

No	38C1	/ 39K	40Ar* Vol	ccNTP/g		Atm Cont	F1	F2
1	27.807 ±	25.795 m	26.68 ± 0.42	E-12 (1.6%)	5.6183%	-0.000016	0.000174
2	5.892 ±	3.768 m	42.13 ± 0.52	E-12 (1.2%)	8.3764%	-0.000009	0.000194
3	$7.945 \pm$	1.839 m	34.91 ± 0.32	E-12 (0.9%)	8.7606%	-0.000015	0.000931
4	2.898 ±	2.320 m	12.63 ± 0.38	E-12 (3.0%)	10.7027%	-0.000004	0.000482
5	$1.797 \pm$	1.318 m	22.68 ± 0.48	E-12 (2.1%)	6.9652%	-0.000005	0.001079
6	2.238 ±	3.000 m	6.84 ± 0.47	E-12 (6.8%)	16.1097%	-0.000006	0.000664
7	2.492 ±	1.866 m	8.53 ± 0.39	E-12 (4.5%)	11.4357%	-0.000011	0.001859
8	$5.409 \pm$	1.334 m	9.55 ± 0.36	E-12 (3.7%)	10.3206%	-0.000007	0.001305
9	4.178 ±	0.565 m	27.07 ± 0.40	E-12 (1.5%)	7.3863%	-0.000006	0.001574
10	$5.517 \pm$	2.245 m	9.11 ± 0.45	E-12 (4.9%)	9.4895%	-0.000004	0.000708
11	1.925 ±	0.929 m	33.47 ± 0.46	E-12 (1.4%)	4.3147%	-0.000004	0.001846
12	$2.716 \pm$	1.148 m	34.89 ± 0.32	E-12 (0.9%)	1.1460%	-0.000001	0.001749
13	1.969 ±	0.828 m	60.74 ± 0.52	E-12 (0.9%)	5.4595%	-0.000002	0.000619
14	$2.375 \pm$	0.426 m	105.05 ± 0.86	E-12 (0.8%)	7.7540%	-0.000006	0.001202
15	1.362 ±	0.472 m	92.41 ± 0.81	E-12 (0.9%)	5.9189%	-0.000002	0.000438
16	2.147 ±	0.320 m	187.52 ± 1.17	E-12 (0.6%)	1.9892%	-0.000001	0.000759
17	$1.411 \pm$	0.182 m	300.18 ± 1.86	E-12 (0.6%)	2.3472%	-0.000001	0.000542
18	$1.524 \pm$	0.243 m	196.36 ± 1.31	E-12 (0.7%)	2.3794%	-0.000001	0.000590
19	1.362 ±	0.251 m	249.77 ± 1.56	E-12 (0.6%)	1.8964%	-0.000001	0.001082
20	$1.671 \pm$	0.454 m	98.47 ± 0.62	E-12 (0.6%)	1.1873%	-0.000002	0.002366
21	1.601 ±	0.383 m	158.49 ± 0.90	E-12 (0.6%)	0.5046%	-0.000001	0.003037
22	1.879 ±	0.213 m	189.08 ± 1.06	E-12 (0.6%)	0.3644%	-0.000001	0.004390
23	1.238 ±	0.408 m	119.21 ± 0.73	E-12 (0.6%)	0.2204%	-0.000001	0.008688
24	1.948 ±	0.262 m	104.39 ± 0.70	E-12 (0.7%)	0.8293%	-0.000001	0.002399
25	3.365 ±	0.544 m	86.51 ± 0.55	E-12 (0.6%)	0.8359%	-0.00003	0.004586
26	1.183 ±	0.216 m	175.09 ± 0.96	E-12 (0.5%)	0.9246%	-0.00003	0.004578
27	2.239 ±	0.438 m	164.46 ± 0.93	E-12 (0.6%)	1.8780%	-0.00003	0.001546
28	3.025 ±	0.439 m	179.62 ± 1.00	E-12 (0.6%)	2.4519%	-0.000009	0.002197
29	27.411 ±	11.271 m	95.01 ± 0.63	E-12 (0.7%)	4.2566%	-0.000063	0.000413
30	8.635 ±	59.966 m	26.79 ± 0.29	E-12 (1.1%)	4.2334%	0.000033	0.000090

Age = 92.145 ± 0.335 MaWt. Mean Age =	88.220 ± 247.166 Ma (2825)
$40 \text{Ar} \times / 39 \text{K} = 8.275 \pm 0.014$	Total 39K Vol = 3.4535E-0010 ccNTP/g
	Total 40Ar* Vol = 2.858 ± 0.004 E-9
(40Ar / 36Ar)sam = 11041.59 ± 328.64	Total Atm 40Ar Vol = 7.8580E-0011 ccNTP/g
(36Ar / 40Ar)sam = 0.00009057 ±0.00000376 (37Ar / 40Ar)sam = 0.00036895 ±0.00002281 (39Ar / 40Ar)sam = 0.11761865 ±0.00014432	Corr 36/40 & 39/40 ratios =-0.446581 Corr 36/40 & 37/40 ratios =-0.010557 Corr 37/40 & 39/40 ratios = 0.012315
37Ca / 39K = 3.137 ± 0.194 E-3 Ca / K = 5.756 ± 0.356 E-3 F1 = -2.238 E-6	38Cl / 39K = 1.923 ± 0.087 E-3 Cl / K = 4.038 ± 0.182 E-4 F2 = 1.135 E-3

DP10-4x P54-019 sericite

No	Namo		Tomp	C11m 39K		۵c	10		402r*	/ 39K	
1 19	-01 1 5W	20-M	1	0 00113	-89	619 +	114 186	Ma -	.7 652 -	+ 9	51
2 19	-02 2 5W	20-M	2	0.00110	26	05/ +	26 708	Ma	2 297 -	+ 2	37
3 19	$-03 \ 1 \ 7W$	20 M	2	0 01100	57	087 +	12 734	Ma	5 076 -	- 2 + 1	15
4 19	-04 2 5W	NR 2	<u>д</u>	0.01288	66	885 +	44 913	Ma	5 964 -	т т + Д	08
5 19	-05 2.5W	21-	5	0.01200	26	379 +	41 154	Ma	2 326 -	+ 3	.00
6 19	-06 3 OW	21 - M	6	0.01002	57	171 +	16 391	Ma	5 084 -	+ 1	48
7 19	-0735W	21 M	7	0.02119	59	• ± / ± ±	1 972	Ma	5 308 -	+ 1	.40
8 1 Q	-08 3 5W	NR 2	8	0.05752	62	.055 ±	3 300	Ma	5 607 -	- 0 + 0	30
0 I J 0 1 0	-09 3 5W	ND 2 20ЪЧ	9	0.000054	67	216 +	5 402	Ma	5 722 -	- 0 + 0	. 30
10 19	-10 / 5W	20kH 20bH	10	0.00105	70	1/3 +	0 683	Ma	6 260 -	- 0 + 0	.45
11 10	-11 / 5W	20kH 20bH	11	0.20505	68	· 1 - 3 - 1 272 +	2 377	Ma	6 090 -	- 0 + 0	.00
12 10	-12 4.5W	20kii 20ku	12	0.53490	70	-272 I 562 +	0 716	Ma	6 298 -	⊥ 0 + ∩	.22
12 10	-12 4.5W	20kii 20kii	14	0.54290	70	.JUZ I 116 +	0.710	Ma	6 467 -	⊥ 0 ⊥ 0	.07
1/ 10	-13 4.5W	20KH 201-U	15	0.04407	77 72	.410 1 655 +	0.801	Ma	6 100 -	⊥ 0 ⊥ 0	.07
14 19	1 - 1 4 4 9 W	20KH 201-11	10	1 00000	72	.000 I	0.269	Ma	0.409 1		.02
12 19	-15 5.5W	ZUKH	10	1.00000	15	.412 I	1.998	Ма	6.740	± U	. / 3
Ne	Neme		G	1	07	2 (7		107.07.00		270-	/ 2017
NO 1 10		20 M	CUIII 365	41	JAP /	30A1 01	0.2	4UAPACC/	g oo '		/ 39K
1 19	-01 1.5W	20-M	0.16856	15.	1.36 ±	91	.83	6.6E-0013	98.	398 ± 2	13.435 m
2 19	-02 2.5W	20-M	0.25960	54.	2.54 ±	46	.57	3.6E-0013	68.	653 ±	36.690 m
3 19	0-03 1.7W	20-M	0.24859	-798	3.28 ±	50546	5.37 -	4.3E-0014	-0.	585 ±	26.116 m
4 19	-04 2.5W	NB 2	0.22927	-133	7.39 ±	5033	3.20 -	7.6E-0014	-138.	365 ± 1	66.421 m
5 19	-05 2.7W	21-	0.30171	543	3.58 ±	716	5.86	2.8E-0013	-11.1	182 ±	58.839 m
6 19	-06 3.0W	21 - M	0.34078	233	1.75 ±	4672	2.47	1.5E-0013	8.	970 ±	30.900 m
7 19	-07 3.5W	21-M	0.41190	368:	1.61 ±	3562	2.90	2.8E-0013	22.8	815 ±	16.092 m
8 19	-08 3.5W	NB 2	0.52903	422	8.79 ±	2990	.48	4.6E-0013	2.4	411 ±	8.477 m
9 19	-09 3.5W	20kH	0.54558	1518	1.38 ±	64747	.59	6.5E-0014	17.3	320 ±	16.940 m
10 19	-10 4.5W	20kH	0.65823	3182	7.05 ±	30686	5.10	4.4E-0013	2.8	842 ±	1.177 m
11 19	-11 4.5W	20kH	0.73604	1158	8.47 ±	15613	3.06	3.0E-0013	0.4	438 ±	3.418 m
12 19	-12 4.5W	20kH	0.98739	1495	0.61 ±	7426	5.90	9.8E-0013	1.3	309 ±	0.750 m
13 19	-13 4.5W	20kH	0.92209	-27862	$2.62 \pm$	27265	5.41 -	2.6E-0013	-1.0	064 ±	1.814 m
14 19	-14 4.9W	20kH	1.00433	7660	2.12 ±	65782	2.45	3.2E-0013	406.	544 ± 4	17.738 μ
15 19	-15 5.5W	20kH	1.00000	-5217	9.24 ±	999176	5.17 -	1.7E-0014	-29.	597 ±	11.571 m
No	38C1	/ 39K		40Ar*	Vol c	cNTP/g		Atm Con	ıt	F1	F2
1 -1	95.801 ±	62.582	2 m -321	.91 ±-3	99.73	E-15 (1	24.2%)	195.2288%	· - 0	.000070	0.000447
2	$28.241 \pm$	24.844	lm 297	7.96 ± 30	07.57	E-15 (1	.03.2%)	54.4662%	· - 0	.000049	0.002010
3	9.858 ±	8.567	′m 1	.21 ±	0.27	E-12 (22.7%)	-3.7015%	5 O	.000000	0.000267
4	8.163 ±	55.384	4 m 418	3.02 ± 23	85.36	E-15 (68.3%)	-22.09528	5 O	.000099	0.010572
5	7.396 ±	27.379) m 238	3.11 ± 3	74.15	E-15 (1	.57.1%)	54.3615%	5 O	.000008	0.000325
6	2.393 ±	11.469) m 1	.05 ±	0.31	E-12 (29.1%)	12.6729%	· - 0	.000006	0.000996
7	-0.398 ±	4.656	5 m 3	3.19 ±	0.27	E-12 (8.5%)	8.0264%	-0	.000016	0.004034
8	1.676 ±	3.154	lm 6	5.10 ±	0.33	E-12 (5.3%)	6.98788	-0	.000002	0.000471
9	$5.501 \pm$	9.200) m 3	3.26 ±	0.28	E−12 (8.5%)	1.9465%	-0	.000012	0.012421
10	1.960 ±	0.934	lm 47	.06 ±	0.50	E−12 (1.1%)	0.9285%	-0	.000002	0.003982
11	2.413 ±	1.390) m 11	.64 ±	0.42	E-12 (3.6%)	2.5499%	· - 0	.000000	0.000226
						- (/		Ű		
12	2.138 +	0.493	3 m 48	3.80 +	0.55	E-12 (1.1%)	1.9765%	; – O	.000001	0.000849
12 13	$2.138 \pm 0.399 +$	0.493	3 m 48 3 m 24	8.80 ± 1.36 +	0.55	E-12 (E-12 (1.1%) 1.2%)	1.9765%	5 - 0	.000001	0.000849
12 13 14	2.138 ± 0.399 ± 1.727 +	0.493 1.023 0.347	3 m 48 3 m 24 7 m 83	8.80 ± 4.36 ± 8.15 ±	0.55 0.28 0.51	E-12 (E-12 (E-12 (1.1응) 1.2응) 0.6응)	1.9765% -1.0606% 0.3858%	5 -0 5 0 5 -0	.000001 .000001 .000000	0.000849 0.001293 0.001334

DP10-4x P54-019 Sericite

Integrated Results:

Age = 70.219 ± 0.467 MaWt. Mean Age = 72.020 ± 0.761 Ma (3.202) $40Ar^* / 39K = 6.267 \pm 0.039$ Total 39K Vol = 3.7254E-0011 ccNTP/g Total 40Ar* Vol = 2.335 ± 0.014 E-10 (40Ar / 36Ar) sam = 17917.46 ± 6019.23 Total Atm 40Ar Vol = 3.9151E-0012 ccNTP/g (36Ar / 40Ar) sam = 0.00005581 ± 0.0002630 (37Ar / 40Ar) sam = $0.00021262 \pm 0.00012524$ (39Ar / 40Ar) sam = $0.15693288 \pm 0.00089391$ Corr 36/40 & 39/40 ratios =-0.681797Corr 36/40 & 37/40 ratios =-0.007924Corr 37/40 & 39/40 ratios =0.009239 $37Ca / 39K = 1.355 \pm 0.798$ E-3 Ca / K = 2.486 ± 1.464 E-3 F1 = -9.664 E-7 Sample Corr 36/40 & 39/40 ratios =0.009239Corr 36/40 & 39/40 ratios =

DP10-8x P54-034 Sericite

No	Name		Temp	Cum 39K		Age			40Ar*	/ 3	39K		
1	34-01c 1.5W	12-	2	0.00305	19.856	±	8.052	Ma	1.748	±		0.71	
2	34-02 1.6W	12-M	3	0.00463	37.470	±	15.388	Ma	3.314	±		1.38	
3	34-03 1.6W	12-M	4	0.00613	56.148	±	18.201	Ma	4.992	±		1.64	
4	34-04 1.6W	NB 1	5	0.06053	61.934	±	0.876	Ma	5.515	±		0.08	
5	34-05 1.6W	12-M	6	0.07288	61.947	±	2.661	Ma	5.516	±		0.24	
6	34-06 1.6W	12-M	7	0.09602	61.748	±	1.967	Ma	5.498	±		0.18	
7	34-07 1.6W	12-M	8	0.12064	68.441	±	1.022	Ma	6.105	±		0.09	
8	34-08 2.0W	13-M	9	0.13545	71.906	±	1.909	Ma	6.421	±		0.17	
9	34-09 2.0W	13-M	10	0.18965	72.731	±	0.691	Ma	6.496	±		0.06	
10	34-10 2.0W	13-M	11	0.25588	69.348	±	0.685	Ma	6.188	±		0.06	
11	34-11 2.5W	13-M	12	0.28735	68.093	±	0.742	Ma	6.074	±		0.07	
12	34-12 2.7W	13-M	13	0.32202	69.122	±	0.726	Ma	6.167	±		0.07	
13	34-13 3.0W	15-M	15	0.37184	71.594	±	0.653	Ma	6.392	±		0.06	
14	34-14 3.0W	15-M	16	0.40899	71.477	±	0.753	Ma	6.382	±		0.07	
15	34-15 3.2W	17-M	18	0.44147	72.817	±	0.784	Ma	6.504	±		0.07	
16	34-16 3.2W	17-M	19	0.53646	73.743	±	0.442	Ma	6.588	±		0.04	
17	34-17 3.4W	17-	20	0.57597	71.581	±	0.499	Ma	6.391	±		0.05	
18	34-18 3.5W	19-M	21	0.61692	71.633	±	0.551	Ma	6.396	±		0.05	
19	34-19 4.0W	19-M	22	0.66846	71.939	±	0.454	Ma	6.424	±		0.04	
20	34-20 3.5W	20kH	23	0.70770	73.042	±	0.605	Ma	6.524	±		0.06	
21	34-21 4.0W	20kH	24	0.85713	73.703	±	0.291	Ma	6.584	±		0.03	
22	34-22 4.5W	20kH	25	0.95918	74.267	±	0.287	Ma	6.636	±		0.03	
23	34-23 4.5W	20kH	26	1.00000	74.365	±	0.690	Ma	6.645	±		0.06	
NT	N		0.00	10							270	12012	
NO 1	Name	10	Cum 365	40	Ar / 36Ar	12.02	c	40ArAcc/g	25	1 1 1	3/C	a / 39K	
1	34-010 1.5 W	12- 12 M	0.1/899	52	$4.19 \pm$	12.82	č	5.9E-0012	25	.144 =	E ,	14.490	m
2	34-02 1.6W	12-IVI	0.27075	50	0.79 ± 5.79	27.22		FE 0012	30	.021	±	20.525	m
3	34-03 1.6W	IZ-IVI	0.30074	23	$5./8 \pm$	143.22	1	.5E-0012	21	.492	±	25.922	m
4	34-04 1.6W		0.40331	211	$0.0/\pm$	5/8.95	1	0.1E-0012	22	.//0	±	1.191	m
3	34-05 1.6W	12-IVI	0.45495	257	$2.11 \pm 4.26 \pm$	/1/.14	1	.0E-0012	33	.413	±	3.123	m
07	34-00 1.0W	12-IVI	0.50205	Z1Z 412	$4.30 \pm$	420.27	1	0.5E-0012	40	.2/3	Ŧ	2.240	m
/	34-07 1.0W	12-IVI	0.55979	413	4.99 ±	002.33	-	.9E-0012	22	.134 500	Ŧ	1.930	m
8	34-08 2.0W	13-M	0.54515	1/4/	$4.43 \pm 27.$	238.08	4	2.0E-0013	16	.388	±	0.075	m
9 10	34-09 2.0W	13-M	0.38///	823	7.38 ± 2	524.42	4	CIE-0012	10	./04 527	±	0.882	m
10	34-10 2.0W	13-M	0.08809	423	$5.02 \pm 7.60 \pm$	514.05	2	0.0E-0012	10	.337	±	0.890	m
11	34-11 2.5W	13-M	0.73911	390	7.09 ±	514.05	4	2.5E-0012	20	.021	±	3.33Z	m
12	34-12 2.7W	15-M	0.79342	409	$2.57 \pm 7.26 \pm 7.26$	545.72	4	4E-0012	1/	.301 714	±	1.813	m
13	34-13 3.0W	15-M	0.82242	1088	7.30 ± 3	524.16	1	4E-0012	10	./14	±	0.843	m
14	34-14 3.0W	15-M	0.84978	2005	0.69 ± 2	3/9.1/	ا م	.4E-0012	19	.000	±	1.270	m
15	34-15 3.2W	1 /-M	0.85051	28025	$5.62 \pm 2/3/1$	20.24	2	0.6E-0014	18	.133	±	2.158	m
10	34-16 3.2W	1 /-M	0.86930	3241	$0.3/\pm 13^{\circ}$	162 70	2	2.3E-0013	1/	./05	±	0.586	m
1/	34-1/ 3.4W	1/-	0.87982	2342	7.40 ± 12	103.79	2	0.2E-0013	10	.293	±	0.747	m
18	34-18 3.5W	19-M	0.89434	1/69	3.85 ± 7	/93.89		2E-0013	19	.369	±	0.894	m
19	34-19 4.0W	19-M	0.91414	1642	2.79 ± 3	219.55	ý 1	2E-0012	27	.289	±	1.207	m
20	34-20 3.3 W	20KH	0.93885	1028	3.01 ± 2	8U/.13	ا ~	1.2E-0012	39.	.809	±	1.511	m
21	34-21 4.0W	20KH	0.99223	17204	1.55 ± 2	04.01	1	2.0E-0012	63	125	±	0./45	m
22	34-22 4.3W	20KH	0.99601	1/294	0.55 ± 2094	94.91 42.02	ا ~	1.9E-0013	23	.133	± ,	1.537	m
25	34-23 4.3W	20KH	1.00000	6385	0.34 ± 1292	42.02		2.0E-0013	9	.00/	±	1.230	m

DP10-8x P54-034 sericite

No	38C1	/ 39K	40A	r* Vol d	ccNTP/	g		Atm Cont	: F1	F2
1	6.373 ±	8.977	m 860.67 ±	350.90	E-15	(40.	8%)	91.1499%	-0.000018	0.000097
2	-102.399 ±	30.803	m 849.99 ±	352.63	E-15	(41.	5응)	84.2393%	-0.000026	0.000142
3	3.741 ±	10.985	m 1.21 ±	0.40	E-12	(32.	9응)	55.1535%	-0.000055	0.000986
4	2.427 ±	0.703	m 48.48 ±	0.70	E-12	(1.	4응)	9.4831%	-0.000023	0.004498
5	-1.134 ±	2.244	m 11.01 ±	0.48	E-12	(4.	3%)	12.4572%	-0.000024	0.003479
6	2.994 ±	1.680	m 20.56 ±	0.67	E-12	(3.	2응)	13.9101%	-0.000029	0.003700
7	3.813 ±	0.847	m 24.29 ±	0.38	E-12	(1.	68)	7.1463%	-0.000024	0.005768
8	0.999 +	3.211	m 15.37 +	0.42	E-12	(2.	7%)	1.6910%	-0.000016	0.016590
9	1 429 +	0 616	m 56 91 +	0 61	E-12	(1	1응)	3 5785%	-0 000012	0 005697
10	2 042 +	0 391	m 66.23 +	0 72	E-12	(1	- 0) 1응)	6 9775%	-0 000012	0 002921
11	506 600 +	977 864	11 30.89 +	0.37	E-12	(1	2%)	7 5620%	-0 000014	0 003302
12	4 252 +	0 548	m 34.56 +	0.07	E-12	(1	20) 22)	7 2204%	-0 000012	0.002965
13	1 911 +	0.540	$m = 51.00 \pm 51.07 \pm $	0.40	E 12	(1	20) (2)	7.22048 2 71/22	-0 000012	0.002505
11	513 965 +	711 729	11 38 31 +	0.34	E 12 F-12	(1	22)	3 /1592	-0 000012	0.007007
15	2 802 +	1 263	$\mu 30.51 \pm 31.11 \pm$	0.40	5 12 5-12	(1	20) 29)	0 10549	-0 000013	0.184031
1 C	2.092 <u>1</u>	0 214	m 101 14 ±	0.40			Z~0) 7 º.)	0.116	-0.000013	0.104031
17	1.600 ±	0.314	10 101.14 ±	0.74	E-12 E-12	(0.	/ (5) 0 @.)	0.91106 1 26129	-0.000013	0.023010
1 /	1.001 I 1.475 I	0.420	111 40.01 ±	0.34	E-12 E-12	(0.	00)	1.20136	-0.000007	0.009304
10	1.4/5 ±	0.553	m 42.33 ±	0.38	E-12	(0.	96) 00)	1.0/018	-0.000014	0.014494
19	2.810 ±	0.4/1	m $53.51 \pm$	0.42	E-12	(0.	85) 00)	1./9938	-0.000019	0.018/64
20	2.629 ±	0.855	m 41.3/±	0.40	E-12	(1.	() () ()	2.87298	-0.000028	0.016/19
21	1.606 ±	0.186	m 159.02 ±	0.95	E-12	(0.	68)	1.6352%	-0.000046	0.045986
22	1.912 ±	0.517	m 109.45 ±	0.63	E-12	(0.	6응)	0.1709%	-0.000017	0.143950
23	3.131 ±	0.579	m 43.84 ±	0.45	E-12	(1.	()응)	0.4487%	-0.000007	0.025951
Tnta	arated Resu	1+0.								
THC	lyracea nest	1100.								
Age	= 71.153	± 0.28	39 Ma			Wt. M	ean Ag	e = 72.35	50 ± 2.410 Ma	
-							_			
(18	.978) 40Ar*	/ 39K =	6.352 ±			0.016		Тс	otal 39K Vol	=
	1 (1(0)) 00	10								
	1.0102E-00	IU CONTE	?/g							
						Total	40Ar*	Vol = 1	1.027 ± 0.003	E-9
						rocur	10111	101	2.02/ 2 0.000	
(402	Ar / 36Ar)sa	m = 642	21.23 ± 262.	86		Total	Atm 4	OAr Vol =	= 4.9524E-0011	1
CCN	[P/g									
1367	r / 10 r	m = 0.00	015573 +0 00	000881	C	orr 3	6/10 c	39/10 -	+ios0 619	310
(302	AI / 40AI) Sa	m = 0.00	3013373 ± 0.00	000001	C	orr 3	6/10 a	$37/40 r^{-2}$	tios = 0.010	916
(307	AI / 40AI)Sa	m = 0.00	5420700 ± 0.00	004950	C	orr 3	0/40 & 7/10 s	39/40 r	= 0.111	91 91
(391	11 / FUAL/Sd	0.1.	JOTOTOJ TO.00	001000	C	ULT J	,/=∪ α	JJ/40 IC		υı
3702	a / 39K = 2	2.801 + 0).032 E-2			38C1	/ 39к	= 1.833	± 0.154 E-3	
Ca	/K = 5.	140 ± 0 .	060 E-2		(Cl / P	X =	3.848 ±	0.322 E-4	
F1 =	= -1.998 E-5					F2 =	7.472	E-3		
							_			

DP11-123 P57-004 biotite

Fractions:

No		Name		Temp) (Cum	39K		Age			40	Ar* / 39K	
1	4-01	1.5W	10-Fe	1		0.02	2522	89.598	±	72.014	Ma	8.	$.578 \pm 7$.07
2	4-02	3.5W	10-Fe	2		0.06	5775	489.522	±	40.965	Ma	52.	.513 ± 5	.02
3	4-03	4.5W	20kHz	3		0.13	8075	783.669	±	20.383	Ma	91.	.645 \pm 2	.94
4	4-04	4.5W	20kHz	4		0.17	7460	832.691	±	34.265	Ma	98.	$.810 \pm 5$.08
5	4-05	4.5W	20kHz	5		0.30	0045	811.713	±	12.900	Ma	95.	$.720 \pm 1$.89
6	4-06	4.5W	20kHz	6		0.81	568	677.600	±	4.444	Ma	76	$.793 \pm 0$.60
7	4-07	4.5W	20kHz	7		0.91	112	874.699	±	19.096	Ma	105	$.106 \pm 2$.90
8	4-08	4.5W	20kHz	8		1.00	0000	614.276	±	19.162	Ma	68.	.334 ± 2	.52
No		Name		Cum	36S			40Ar / .	36Ar			40ArAcc/g	37Ca	/ 39K
1	4-01	1.5W	10-Fe	0.028	315		905.07	'± 15	532.30)		1.9E-0013	$685.247 \pm$	331.951 m
2	4-02	3.5W	10-Fe	0.086	549		3332.23	3 ± 19	970.00)		3.9E-0013	$741.413~\pm$	388.617 m
3	4-03	4.5W	20kHz	0.181	64		5108.33	3 ± 22	237.08	;		6.4E-0013	-4.032 \pm	121.607 m
4	4-04	4.5W	20kHz	0.303	95		3105.79	9 ± 11	82.58	5		8.2E-0013	$397.973~\pm$	223.930 m
5	4-05	4.5W	20kHz	0.317	/03		73326.94	4 ± 2902	44.12			8.8E-0014	-55.104 \pm	53.405 m
6	4-06	4.5W	20kHz	0.532	271		14847.24	4 ± 41	79.37	,		1.4E-0012	$39.852~\pm$	19.153 m
7	4-07	4.5W	20kHz	0.787	/82		3414.31	1± 8	315.75	5		1.7E-0012	$285.694 \ \pm$	99.555 m
8	4-08	4.5W	20kHz	1.000	000		2566.18	8 ± (555.05	5		1.4E-0012	$288.145~\pm$	106.615 m
No			38C1/3	39K	40A	r* Vo	ol			ccNTP/g		Atm Cont	F1	F2
1	-	-86.411	± 94.	510 m	388.68	±	319.36	E-15		(82.2%)		32.6494%	-0.000489	9 0.012941
2		12.094	± 112.	445 m	4.01	±	0.24	E-12	(5.9%)		8.8679%	-0.000529	9 0.011315
3	-	-16.918	± 22.	539 m	10.37	±	0.29	E-12	(2.8%)		5.7847%	0.00000	3 0.000056
4		35.030	± 39.	787 m	7.79	±	0.32	E-12	(4.1%)		9.5145%	-0.000284	4 0.002870
5		17.198	± 14.	951 m	21.64	±	0.37	E-12	(1.7%)		0.4030%	0.000039	9 0.011847
6		-4.975	± 4.	.243 m	71.08	±	0.54	E-12	(0.8%)		1.9903%	-0.00002	8 0.002077
7	-	-19.276	± 22.	988 m	18.02	±	0.42	E-12	(2.3%)		8.6548%	-0.000204	4 0.002160
8	-	-54.463	± 23.	847 m	10.91	±	0.37	E-12	(3.4%)		11.5152%	-0.00020	6 0.002463

Age = $703.018 \pm$	5.159 Ma		Wt. Mean Age = 693.4	42 ± 195.6 Ma(50.26)
40Ar* / 39K =	80.273 ± 0).724	Total 39K Vol	= 1.7965E-0012 ccNTP/g
			Total 40Ar* Vol =	$1.442 \pm 0.010 \text{ E-10}$
(40Ar / 36Ar)sam =	$6662.86\pm$	951.22	Total Atm 40Ar Vol =	6.6926E-0012 ccNTP/g
(36Ar / 40Ar)sam = 0	0.00015009 ±0.0000	2964	Corr 36/40 & 39/40 ra	tios =-0.521936
(37Ar / 40Ar)sam =	0.00157728 ± 0.0003	33961	Corr 36/40 & 37/40 ra	tios =-0.023506
(39Ar / 40Ar)sam =	0.01190496 ±0.0000	09973	Corr 37/40 & 39/40 ra	tios =0.020006
37Ca / 39K = 1.325	±0.285 E-1		$38C1 / 39K = -8.274 \pm$	7.156 E-3
Ca / K = 2.431	± 0.523 E-1		$C1/K = -1.738 \pm 1$.503 E-3
F1 = -9.451 E-5			F2 = 2.834 E-3	

DP11-123 P57-007 whole rock Fractions:

No	Nam	e		Temp	Cum 39	K		Age			4	0Ar* / 39K	
1	7-01 1.5W	V	2-Fe	1	0.0062	3	624.975	±	22.425	Ma	69.743	± 2	2.96
2	7-02 1.6W	V	2-Fe	2	0.0116	7	189.093	±	30.199	Ma	18.616	± 3	3.13
3	7-03 3.5V	V	2-Fe	3	0.0323	0	131.284	±	7.878	Ma	12.716	± ().79
4	7-04 4.5W	V 20)kHz	4	0.0792	0	171.517	±	3.601	Ma	16.802	± ().37
5	7-05 4.5W	V 20)kHz	5	0.1288	0	186.920	±	4.397	Ma	18.390	± ().46
6	7-06 4.5W	V 20)kHz	6	0.1546	3	208.452	±	7.557	Ma	20.634	± ().79
7	7-07 4.5V	V 20)kHz	7	0.2553	7	232.266	±	1.547	Ma	23.146	± (0.16
8	7-08 4.5V	V 20)kHz	8	0.36282	2	238.109	±	1.558	Ma	23.768	± (0.17
9	7-09 4.5V	V 2	0khz	9	0.5624	1	267.536	±	0.768	Ma	26.929	± (0.08
10	7-10 4.5W	V 20)kHz	10	0.66372	2	247.064	±	1.528	Ma	24.725	± (0.16
11	7-11 4.5V	V 20)kHz	11	0.7250	0	255.306	±	3.074	Ma	25.609	± ().33
12	7-12 4.5V	V 20)kHz	12	0.7716	6	262.870	±	3.855	Ma	26.425	± (0.42
13	7-13 4.5V	V 20)kHz	13	0.93642	2	319.435	±	1.276	Ma	32.632	± ().14
14	7-14 4.5V	V 20)kHz	14	0.9711	9	441.110	±	3.832	Ma	46.662	± (0.46
15	7-15 5.5V	V 20)kHz	15	1.0000	0	624.027	±	4.875	Ma	69.618	± ().64
No	Name	;	(Cum 36S		40Ar / 3	6Ar			40A	ArAcc/g	37Ca	/ 39K
1	7-01 1.5W	2-F	Fe	0.32498	9	$10.34 \pm$		74.9	2	5.7E-0	012	$3.356\pm$	0.123
2	7-02 1.6W	2-F	Fe	0.29937	-1	524.48 ±	= 150	54.6	6	-4.5E-	0013	$3.606 \pm$	0.154
3	7-03 3.5W	2-F	e	0.35060	2	$651.81 \pm$	13	08.8	37	8.9E-	0013	$12.512 \pm$	0.081
4	7-04 4.5W 2	0kH	Z	0.55160	2	$099.37 \pm$	2	257.0	69	3.5E-	0012	$27.723 \pm$	0.211
5	7-05 4.5W 2	0kH	Z	0.63352	5	$419.02 \pm$	20	77.3	35	1.4E-	0012	$27.576 \pm$	0.283
6	7-06 4.5W 2	0kH	Z	0.72773	2	$898.05 \pm$	8	361.3	38	1.6E-	0012	$26.849 \pm$	1.082
7	7-07 4 5W 2	0kH	7	0.81601	124	449 13 +	28	25.7	72	1 5E-	0012	20.019 = 21.901 +	0.108
8	7-08 4 5W 2	0kH	7	0.80986	-190	764 36 +	7581	90.4	51	-1 1E-0	0013	11283 +	0.041
9	7-09 4 5W 2	Okhz	,	0.84425	72	200 73 +	402	21.2	25	6 0F-	0013	$2.057 \pm$	0.013
10	7-10.4 5W 2	0KHZ	. 7	0.01120	16	993 74 +	-102	21.2 204 ·	50	1.2E	0012	2.037 ±	15.420 m
11	7_11 / 5W	2011 20124	.Z 47	0.01027	10	712 16 ±	13133	204.	50 24	6.0E	0012	$201.000 \pm$ 248 713 +	20.107 m
12	7 10 A 5W	20KI	12	0.90950	/ -101 //1	76 46 ±	072	120.2 170 1	2 - 7 62	-0.9E-	0017	$240.713 \pm$	18.062 m
12	7-12 4.5 W 2			0.09034	-44]	$160.55 \pm$	ווע הרכ	~20.0	11	-2.2E-V	0012	$224.011 \pm$	6.020 m
13	/-15 4.5 W 2		Z	0.91020	1814	$+09.33 \pm$	5//	089. 	26	2.4E-	0013	522.521 ±	6.929 m
14	/-14 4.5 W 2	20KH	Z	0.96294	14	450.06±	48	5/1 	26	9.2E-	0013	549.983 ±	19.578 m
15	/-15 5.5W 2	20kH	Z	1.00000	25	199.90±	163	85.	//	6.4E-	0013	/12.304 ±	21.923 m
No	38C	1/39	Ж		40Ar	* Vol	ccNTP/g	5		A	tm Cont	F1	F2
1	16.030	±	17.604	m	$11.76\ \pm$	0.47	E-12	(4.0%)) 32	2.4605%	-0.00239	4 0.005825
2	-31.799	±	22.621	m	2.74 \pm	0.46	E-12	(16.7%)) -19	9.3837%	-0.002572	0.112131
3	2.773	±	4.758	m	7.10 \pm	0.44	E-12	(6.2%)) 1	1.1433%	-0.00892	5 0.387719
4	4.346	±	3.444	m	$21.34\ \pm$	0.46	E-12	(2.2%)) 14	4.0756%	-0.01977	5 0.443237
5	7.398	±	1.618	m	$24.70 \ \pm$	0.60	E-12	(2.4%)) :	5.4530%	-0.01967	0 0.675939
6	-4.079	±	6.822	m	$14.43 \pm$	0.50	E-12	(3.5%)) 10).1965%	-0.01915	0.476337
7	4.260	±	1.353	m	$63.15 \pm$	0.47	E-12	(0.8%)) 2	2.3737%	-0.01562	3 0.758940
8	0.106	±	1.045	m	$69.16 \pm$	0.55	E-12	(0.8%)) -().1549%	-0.00804	8 1.041414
9	1.765	±	0.899	m	145.56 ±	0.81	E-12	(0.6%) ().4093%	-0.00146	7 0.604913
10	0.439	±	2.110	m	67.83 ±	0.42	E-12	(0.6%)	1.7389%	-0.00018	/ 0.046876
11	0.335	±	1.944	m	$42.50 \pm$	0.54	E-12	(1.3%) -(J.1626%	-0.00017	/ 0.976207
12	0.592	±	3.040	m	35.40 ±	0.52	E-12	(1.6%) -(J.6689%	-0.00016	J 0.118390
15	1.110	± ,	0.673	m	143.39 ±	0.89	E-12	(0.6%) (J.1028%	-0.00023	J 0.333324
14	5.474	± ,	5./88	m	45.94 ±	0.58	E-12	(0.9%) 2	2.0430%	-0.00039	2 0.044163
13	0.280	±	2.961	111	34.32 ±	0.50	E-12	(0.9%).	1.1/20%	-0.00050	5 0.000008

DP11-123 **P57-007** whole rock

Age	$= 273.749 \pm$	0.858 Ma	Wt. Mean Age = 267.08	± 380.33 Ma (762.1)	
40Ar*	/ 39K =	$27.603 \pm$	0.087	Total 39K Vol	= 2.7081E-0011 ccNTP/g
				Total 40Ar* Vol =	$7.475 \pm 0.021 \text{ E-10}$
(40Ar /	/ 36Ar)sam = 12	996.30±1251.91	l	Total Atm 40Ar Vol = 1.7	392E-0011 ccNTP/g
(36Ar /	40Ar)sam = 0.0	00007694 ± 0.000	001036	Corr 36/40 & 39/40 ratios	=-0.591502
(37Ar /	40Ar)sam = 0.2	27028550 ±0.001	15578	Corr 36/40 & 37/40 ratios	=-0.379918
(39Ar /	(40 Ar) sam = 0.0	03540384 ±0.000	009141	Corr 37/40 & 39/40 ratios	=0.445701
37Ca / Ca / I	$39K = 7.634 \pm 0$ $X = 1.401 \pm 0$	0.030 = 0.005 E 1		$38C1 / 39K = 1.947 \pm 0.52$ $C1 / K = 4.088 \pm 1.1$	9 E-3 11 E-4
F1 = -5	.446 E-3			F2 = 4.926 E-1	

DP11-125b P57-002 green muscovite

Fractions:

No		Name		Temp	Cum 39K	Age	e		40Ar* / 39K	
1	2-01	1.4W	6-Fe	1	0.00261	$145.231 \hspace{0.1 in} \pm \hspace{0.1 in}$	43.114	Ma	$14.122 \ \pm$	4.36
2	2-02	1.6W	6-Fe	2	0.04030	$135.443 \hspace{0.2cm} \pm \hspace{0.2cm}$	2.474	Ma	$13.134 \ \pm$	0.25
3	2-03	1.7W	6-Fe	3	0.08121	$134.139 \ \pm$	2.562	Ma	$13.003 \ \pm$	0.26
4	2-04	2.0W	6-Fe	4	0.11257	$138.740\ \pm$	2.198	Ma	$13.466 \ \pm$	0.22
5	2-05	2.5W	6-Fe	5	0.16165	$157.311 \hspace{0.1 in} \pm \hspace{0.1 in}$	1.439	Ma	$15.349 \ \pm$	0.15
6	2-06	2.7W	6-Fe	6	0.17846	$179.510 \ \pm$	5.823	Ma	$17.625 \pm$	0.60
7	2-07	2.8W	6-Fe	7	0.22205	$183.193 \ \pm$	2.036	Ma	$18.005 \ \pm$	0.21
8	2-08	2.9W	6-Fe	8	0.24341	$199.804 \hspace{0.2cm} \pm \hspace{0.2cm}$	5.027	Ma	$19.730 \ \pm$	0.52
9	2-09	3.1W	6-Fe	9	0.26435	$199.327 \ \pm$	3.572	Ma	$19.680 \ \pm$	0.37
10	2-10	3.5W	6-Fe	10	0.29105	$242.281 \ \pm$	3.361	Ma	$24.213 \ \pm$	0.36
11	2-11	4.5W	20kHz	11	0.35934	$293.572 \ \pm$	1.628	Ma	$29.769 \ \pm$	0.18
12	2-12	4.5W	20kHz	12	0.41115	$308.359 \ \pm$	2.104	Ma	$31.401 \ \pm$	0.23
13	2-13	4.5W	20kHz	13	0.49091	$308.620 \ \pm$	1.597	Ma	$31.430 \ \pm$	0.18
14	2-14	4.5W	20kHz	14	0.60764	$324.349 \ \pm$	1.352	Ma	$33.180\ \pm$	0.15
15	2-15	4.5W	20kHz	15	0.64513	$321.535 \ \pm$	3.241	Ma	$32.866 \ \pm$	0.36
16	2-16	4.5W	20kHz	16	0.72794	$324.584 \ \pm$	1.737	Ma	$33.206 \pm$	0.19
17	2-17	4.5W	20kHz	17	0.78906	$328.022 \ \pm$	1.606	Ma	$33.591 \ \pm$	0.18
18	2-18	4.5W	20kHz	18	0.84020	$332.626 \ \pm$	2.060	Ma	$34.107 \ \pm$	0.23
19	2-19	4.5W	20kHz	19	0.90159	$395.253 \hspace{0.2cm} \pm \hspace{0.2cm}$	1.730	Ma	$41.263 \ \pm$	0.20
20	2-20	4.5W	20kHz	20	0.94468	$401.463 \ \pm$	2.308	Ma	$41.986 \ \pm$	0.27
21	2-21	4.5W	20kHz	21	0.98005	$409.832 \ \pm$	3.076	Ma	$42.965 \ \pm$	0.36
22	2-22	5.0W	20kHz	22	1.00000	$420.995 \ \pm$	4.773	Ma	$44.277 \hspace{0.1 in} \pm \hspace{0.1 in}$	0.56
No		Name		Cum 36S	40A	ar / 36Ar		40ArAcc/g	370	ca / 39K
No 1	2-01	Name 1.4W	6-Fe	Cum 36S 0.03068	40A 1043.	Ar / 36Ar 84 ± 811.	31	40ArAcc/g 6.0E-0013	37C -39.041 ±	ča / 39K 213.748 m
No 1 2	2-01 2-02	Name 1.4W 1.6W	6-Fe 6-Fe	Cum 36S 0.03068 0.21602	40A 1043. 1962.	Ar / 36Ar 84 ± 811. 53 ± 180.	31 95	40ArAcc/g 6.0E-0013 3.6E-0012	37C -39.041 ± 46.068 ±	ca / 39K 213.748 m 9.730 m
No 1 2 3	2-01 2-02 2-03	Name 1.4W 1.6W 1.7W	6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580	40A 1043. 1962. 2372.	$\begin{array}{l} & \text{Ar} / 36\text{Ar} \\ 84 \pm & 811 \\ 53 \pm & 180. \\ 95 \pm & 310. \end{array}$	31 95 40	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012	37C -39.041 ± 46.068 ± 5.686 ±	ca / 39K 213.748 m 9.730 m 10.019 m
No 1 2 3 4	2-01 2-02 2-03 2-04	Name 1.4W 1.6W 1.7W 2.0W	6-Fe 6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580 0.39211	40A 1043. 1962. 2372. 16453.	$\begin{array}{l} & \text{Ar} / 36\text{Ar} \\ 84 \pm & 811 \\ 53 \pm & 180. \\ .95 \pm & 310. \\ 06 \pm & 14179 \end{array}$	31 95 40 91	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013	370 -39.041 ± 46.068 ± 5.686 ± 2.734 ±	2a / 39K 213.748 m 9.730 m 10.019 m 17.699 m
No 1 2 3 4 5	2-01 2-02 2-03 2-04 2-05	Name 1.4W 1.6W 1.7W 2.0W 2.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775	40A 1043. 1962. 2372. 16453. 8743.	$\begin{array}{l} & \text{Ar} / 36\text{Ar} \\ 84 \pm & 811 \\ 53 \pm & 180. \\ 95 \pm & 310. \\ 06 \pm & 14179 \\ 73 \pm & 2098. \end{array}$	31 95 40 91 60	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012	370 -39.041 ± 46.068 ± 5.686 ± 2.734 ± 2.445 ±	2a / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m
No 1 2 3 4 5 6	2-01 2-02 2-03 2-04 2-05 2-06	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011	40A 1043. 1962. 2372. 16453. 8743. -23908.8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31 95 40 91 60 74	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013	37C -39.041 ± 46.068 ± 5.686 ± 2.734 ± 2.445 ± 10.363 +	2a / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m
No 1 2 3 4 5 6 7	2-01 2-02 2-03 2-04 2-05 2-06 2-07	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758	40A 1043. 1962. 2372. 16453. 8743. -23908.8	$\begin{array}{rrrr} & 4 & 4 & 811\\ & 84 & \pm & 811\\ & 53 & \pm & 180.\\ & 95 & \pm & 310.\\ & 06 & \pm & 14179.2\\ & 73 & \pm & 2098.\\ & 86 & \pm & 65831.2\\ & 93 & \pm & 672 \end{array}$	31 95 40 91 60 74 25	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012	$370^{-39.041 \pm}$ $46.068 \pm$ $5.686 \pm$ $2.734 \pm$ $2.445 \pm$ $10.363 \pm$ $12.276 \pm$	2a / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9 534 m
No 1 2 3 4 5 6 7 8	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2.08	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.8W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31 95 40 91 60 74 25	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012 6.3E-0014	$37C$ $-39.041 \pm$ $46.068 \pm$ $5.686 \pm$ $2.734 \pm$ $2.445 \pm$ $10.363 \pm$ $12.276 \pm$ $52.345 \pm$	2a / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m
No 1 2 3 4 5 6 7 8	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.9W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7212	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31 95 40 91 60 74 25 08	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012 6.3E-0014 7.2E.0012	$37C$ $-39.041 \pm$ $46.068 \pm$ $5.686 \pm$ $2.734 \pm$ $2.445 \pm$ $10.363 \pm$ $12.276 \pm$ $52.345 \pm$ $4.681 \pm$	ca / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m
No 1 2 3 4 5 6 7 8 9	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08 2-09	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.9W 3.1W 2.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078 0.59742	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7313.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31 95 40 91 60 74 25 08 40	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012 6.3E-0014 7.2E-0013 2.7E-0013	$37C$ $-39.041 \pm$ $46.068 \pm$ $5.686 \pm$ $2.734 \pm$ $2.445 \pm$ $10.363 \pm$ $12.276 \pm$ $52.345 \pm$ $4.681 \pm$ $10.221 \pm$	ca / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m 16.496 m
No 1 2 3 4 5 6 7 8 9 10	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08 2-09 2-10	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.9W 3.1W 3.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078 0.59742 0.61623	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7313. 21753.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31 95 40 91 60 74 25 08 40 37	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012 6.3E-0014 7.2E-0013 3.7E-0013	$37C$ $-39.041 \pm$ $46.068 \pm$ $5.686 \pm$ $2.734 \pm$ $2.445 \pm$ $10.363 \pm$ $12.276 \pm$ $52.345 \pm$ $4.681 \pm$ $10.221 \pm$ $2.702 \pm$	ca / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m 16.496 m 11.528 m
No 1 2 3 4 5 6 7 8 9 10 11	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08 2-09 2-10 2-11	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.9W 3.1W 3.5W 4.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078 0.59742 0.61623 0.68292	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7313. 21753. 19316.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 31 95 40 91 60 74 25 08 40 37 32 	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012 6.3E-0014 7.2E-0013 3.7E-0013 1.3E-0012	$37C$ $-39.041 \pm$ $46.068 \pm$ $5.686 \pm$ $2.734 \pm$ $2.445 \pm$ $10.363 \pm$ $12.276 \pm$ $52.345 \pm$ $4.681 \pm$ $10.221 \pm$ $-3.787 \pm$	2a / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m 16.496 m 11.528 m 5.547 m
No 1 2 3 4 5 6 7 8 9 10 11 12	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08 2-09 2-10 2-11 2-12	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.9W 3.1W 3.5W 4.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078 0.59742 0.61623 0.68292 0.71066	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7313. 21753. 19316. 36892.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 31 95 40 91 60 74 25 08 40 37 32 18 	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012 6.3E-0014 7.2E-0013 3.7E-0013 1.3E-0012 5.4E-0013	$\begin{array}{r} 370\\ -39.041 \pm \\ 46.068 \pm \\ 5.686 \pm \\ 2.734 \pm \\ 2.445 \pm \\ 10.363 \pm \\ 12.276 \pm \\ 52.345 \pm \\ 4.681 \pm \\ 10.221 \pm \\ -3.787 \pm \\ 4.571 \pm \end{array}$	ca / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m 16.496 m 11.528 m 5.547 m 6.661 m
No 1 2 3 4 5 6 7 8 9 10 11 12 13	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08 2-09 2-10 2-11 2-12 2-13	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.9W 3.1W 3.5W 4.5W 4.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078 0.59742 0.61623 0.68292 0.71066 0.75080	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7313. 21753. 19316. 36892. 39274.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 31 95 40 91 60 74 25 08 40 37 32 18 99 	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012 6.3E-0014 7.2E-0013 3.7E-0013 1.3E-0012 5.4E-0013 7.9E-0013	$\begin{array}{r} 370\\ -39.041 \pm \\ 46.068 \pm \\ 5.686 \pm \\ 2.734 \pm \\ 2.445 \pm \\ 10.363 \pm \\ 12.276 \pm \\ 52.345 \pm \\ 4.681 \pm \\ 10.221 \pm \\ -3.787 \pm \\ 4.571 \pm \\ 1.049 \pm \end{array}$	ca / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m 16.496 m 11.528 m 5.547 m 6.661 m 4.723 m
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08 2-09 2-10 2-11 2-12 2-13 2-14	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.9W 3.1W 3.5W 4.5W 4.5W 4.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 20kHz 20kHz 20kHz 20kHz	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078 0.59742 0.61623 0.68292 0.71066 0.75080 0.81655	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7313. 21753. 19316. 36892. 39274. 37052.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 31 95 40 91 60 74 25 08 40 37 32 18 99 58 	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0014 7.2E-0013 3.7E-0013 1.3E-0012 5.4E-0013 7.9E-0013 1.3E-0012	$\begin{array}{r} 370\\ -39.041 \pm \\ 46.068 \pm \\ 5.686 \pm \\ 2.734 \pm \\ 2.445 \pm \\ 10.363 \pm \\ 12.276 \pm \\ 52.345 \pm \\ 4.681 \pm \\ 10.221 \pm \\ -3.787 \pm \\ 4.571 \pm \\ 1.049 \pm \\ 3.592 \pm \end{array}$	ca / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m 16.496 m 11.528 m 5.547 m 6.661 m 4.723 m 5.696 m
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08 2-09 2-10 2-11 2-12 2-13 2-14 2-15	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.9W 3.1W 3.5W 4.5W 4.5W 4.5W 4.5W 4.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 20kHz 20kHz 20kHz 20kHz 20kHz	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078 0.59742 0.61623 0.68292 0.71066 0.75080 0.81655 0.80486	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7313. 21753. 19316. 36892. 39274. 37052. -65491.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 31 95 40 91 60 74 25 08 40 37 32 18 99 58 47 	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012 6.3E-0014 7.2E-0013 3.7E-0013 1.3E-0012 5.4E-0013 1.3E-0012 -2.3E-0013	$37C$ $-39.041 \pm$ $46.068 \pm$ $5.686 \pm$ $2.734 \pm$ $2.445 \pm$ $10.363 \pm$ $12.276 \pm$ $52.345 \pm$ $4.681 \pm$ $10.221 \pm$ $-3.787 \pm$ $4.571 \pm$ $1.049 \pm$ $3.592 \pm$ $1.095 \pm$	ca / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m 16.496 m 11.528 m 5.547 m 6.661 m 4.723 m 5.696 m 17.813 m
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08 2-09 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.9W 3.1W 3.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078 0.59742 0.61623 0.68292 0.71066 0.75080 0.81655 0.80486 0.86938 0.86536	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7313. 21753. 19316. 36892. 39274. 37052. -65491. 26891. -318050	$\begin{array}{r} & \text{Ar} / 36\text{Ar} \\ 84 \pm & 811 \\ 53 \pm & 180. \\ 95 \pm & 310. \\ 06 \pm & 14179.2 \\ .73 \pm & 2098. \\ 86 \pm & 65831 \\ 93 \pm & 672. \\ .61 \pm & 598637.4 \\ .92 \pm & 2708. \\ 16 \pm & 19619 \\ 37 \pm & 5908. \\ 96 \pm & 29648. \\ 42 \pm & 23012.2 \\ 99 \pm & 10880 \\ 64 \pm & 101647.4 \\ 22 \pm & 8084. \\ .0.11 \pm 1471413.77 \end{array}$	31 95 40 91 60 74 25 08 40 37 32 18 99 58 47 41	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012 6.3E-0014 7.2E-0013 3.7E-0013 1.3E-0012 5.4E-0013 1.3E-0012 -2.3E-0013 1.3E-0012 -7.9E-0014	$\begin{array}{r} 370\\ -39.041 \pm \\ 46.068 \pm \\ 5.686 \pm \\ 2.734 \pm \\ 2.445 \pm \\ 10.363 \pm \\ 12.276 \pm \\ 52.345 \pm \\ 4.681 \pm \\ 10.221 \pm \\ -3.787 \pm \\ 4.571 \pm \\ 1.049 \pm \\ 3.592 \pm \\ 1.095 \pm \\ 11.665 \pm \\ -3.341 \pm \end{array}$	ca / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m 16.496 m 11.528 m 5.547 m 6.661 m 4.723 m 5.696 m 17.813 m 7.999 m 6.537 m
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08 2-09 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.9W 3.1W 3.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078 0.59742 0.61623 0.68292 0.71066 0.75080 0.81655 0.80486 0.86938 0.86536 0.86371	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7313. 21753. 19316. 36892. 39274. 37052. -65491. 26891. -318050 -659560	$\begin{array}{r} & \text{Ar} / 36\text{Ar} \\ 84 \pm & 811 \\ 53 \pm & 180. \\ .95 \pm & 310. \\ 06 \pm & 14179.! \\ .73 \pm & 2098. \\ .86 \pm & 65831 \\ 93 \pm & 672. \\ .61 \pm & 598637.! \\ .92 \pm & 2708. \\ 16 \pm & 19619 \\ 37 \pm & 5908. \\ 96 \pm & 29648 \\ 42 \pm & 23012 \\ 99 \pm & 10880 \\ 64 \pm & 101647.4 \\ 22 \pm & 8084 \\ 0.11 \pm 1471413.77 \\ 5.67 \pm 7835302.43 \end{array}$	31 95 40 91 60 74 25 08 40 37 32 18 99 58 47 41	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012 6.3E-0014 7.2E-0013 3.7E-0013 1.3E-0012 5.4E-0013 1.3E-0012 -2.3E-0014 -3.2E-0014	$\begin{array}{r} 370\\ -39.041 \pm \\ 46.068 \pm \\ 5.686 \pm \\ 2.734 \pm \\ 2.445 \pm \\ 10.363 \pm \\ 12.276 \pm \\ 52.345 \pm \\ 4.681 \pm \\ 10.221 \pm \\ -3.787 \pm \\ 4.571 \pm \\ 1.049 \pm \\ 3.592 \pm \\ 1.095 \pm \\ 11.665 \pm \\ -3.341 \pm \\ 7.540 \pm \end{array}$	Sa / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m 16.496 m 11.528 m 5.547 m 6.661 m 4.723 m 5.696 m 17.813 m 7.999 m 6.537 m 5.628 m
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08 2-09 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.9W 3.1W 3.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W 4.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078 0.59742 0.61623 0.68292 0.71066 0.75080 0.81655 0.80486 0.86938 0.86536 0.86371 0.88810	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7313. 21753. 19316. 36892. 39274. 37052. -65491. 26891. -318056 65098	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31 95 40 91 60 74 25 08 40 37 32 18 99 58 47 41 7	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012 6.3E-0014 7.2E-0013 3.7E-0013 1.3E-0012 5.4E-0013 1.3E-0012 -2.3E-0014 -3.2E-0014 4.8E-0013	$\begin{array}{r} 370\\ -39.041 \pm \\ 46.068 \pm \\ 5.686 \pm \\ 2.734 \pm \\ 2.445 \pm \\ 10.363 \pm \\ 12.276 \pm \\ 52.345 \pm \\ 4.681 \pm \\ 10.221 \pm \\ -3.787 \pm \\ 4.571 \pm \\ 1.049 \pm \\ 3.592 \pm \\ 1.095 \pm \\ 11.665 \pm \\ -3.341 \pm \\ 7.540 \pm \\ -3.567 \pm \\ \end{array}$	ca / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m 16.496 m 11.528 m 5.547 m 6.661 m 4.723 m 5.696 m 17.813 m 7.999 m 6.537 m 5.628 m 6.210 m
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08 2-09 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.7W 2.8W 2.9W 3.1W 3.5W 4.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078 0.59742 0.61623 0.68292 0.71066 0.75080 0.81655 0.80486 0.86938 0.86536 0.86371 0.88810 0.93200	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7313. 21753. 19316. 36892. 39274. 37052. -65491. 26891. -318050 -659560 65098 26013	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31 95 40 91 60 74 25 08 40 37 32 18 99 58 47 41 5 7 99	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0012 6.3E-0014 7.2E-0013 3.7E-0013 1.3E-0012 5.4E-0013 1.3E-0012 -2.3E-0014 -3.2E-0014 4.8E-0013 8.6E-0013	$\begin{array}{r} 370\\ -39.041 \pm \\ 46.068 \pm \\ 5.686 \pm \\ 2.734 \pm \\ 2.445 \pm \\ 10.363 \pm \\ 12.276 \pm \\ 52.345 \pm \\ 4.681 \pm \\ 10.221 \pm \\ -3.787 \pm \\ 4.571 \pm \\ 1.049 \pm \\ 3.592 \pm \\ 1.095 \pm \\ 11.665 \pm \\ -3.341 \pm \\ 7.540 \pm \\ -3.567 \pm \\ 8.055 \pm \end{array}$	ca / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m 16.496 m 11.528 m 5.547 m 6.661 m 4.723 m 5.696 m 17.813 m 7.999 m 6.537 m 5.628 m 6.210 m 7.073 m
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	2-01 2-02 2-03 2-04 2-05 2-06 2-07 2-08 2-09 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21	Name 1.4W 1.6W 1.7W 2.0W 2.5W 2.5W 2.7W 2.8W 2.9W 3.1W 3.5W 4.5W	6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 6-Fe 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz 20kHz	Cum 36S 0.03068 0.21602 0.37580 0.39211 0.44775 0.44011 0.55758 0.56078 0.59742 0.61623 0.68292 0.71066 0.75080 0.81655 0.80486 0.86938 0.86536 0.86371 0.88810 0.93200 0.98595	40A 1043. 1962. 2372. 16453. 8743. -23908.8 4464. 82505 7313. 21753. 19316. 36892. 39274. 37052. -65491. 26891. -318050 65098 26013 17873	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31 95 40 91 60 74 25 08 40 37 32 18 99 58 7 41 5 7 9 0	40ArAcc/g 6.0E-0013 3.6E-0012 3.1E-0012 3.2E-0013 1.1E-0012 -1.5E-0013 2.3E-0014 7.2E-0013 3.7E-0013 1.3E-0012 5.4E-0013 1.3E-0012 -2.3E-0014 -3.2E-0014 4.8E-0013 8.6E-0013 1.1E-0012	$\begin{array}{r} 370\\ -39.041 \pm \\ 46.068 \pm \\ 5.686 \pm \\ 2.734 \pm \\ 2.445 \pm \\ 10.363 \pm \\ 12.276 \pm \\ 52.345 \pm \\ 4.681 \pm \\ 10.221 \pm \\ -3.787 \pm \\ 4.571 \pm \\ 1.049 \pm \\ 3.592 \pm \\ 1.095 \pm \\ 11.665 \pm \\ -3.341 \pm \\ 7.540 \pm \\ -3.567 \pm \\ 8.055 \pm \\ 3.967 \pm \\ 3.967 \pm \end{array}$	ca / 39K 213.748 m 9.730 m 10.019 m 17.699 m 12.872 m 19.771 m 9.534 m 19.088 m 16.496 m 11.528 m 5.547 m 6.661 m 4.723 m 5.696 m 17.813 m 7.999 m 6.537 m 5.628 m 6.210 m 7.073 m 9.631 m

DP11-125b P57-002 green muscovite

No	38C	1/3	9K	40Ar*	* Vol c	cNTP/g			Atm Cont	F1	F2
1	-17.943	±	29.164 m	$1.52 \pm$	0.47	E-12	(30.7%)	28.3090%	0.000028	0.000551
2	0.027	±	3.796 m	$20.48 \ \pm$	0.37	E-12	(1.8%)	15.0571%	-0.000033	0.001598
3	5.521	±	1.917 m	$22.00 \ \pm$	0.43	E-12	(1.9%)	12.4529%	-0.000004	0.000250
4	0.069	±	2.467 m	17.47 \pm	0.29	E-12	(1.7%)	1.7960%	-0.000002	0.000914
5	0.874	±	1.907 m	$31.16 \pm$	0.31	E-12	(1.0%)	3.3796%	-0.000002	0.000374
6	2.572	±	4.266 m	12.26 \pm	0.42	E-12	(3.4%)	-1.2359%	-0.000007	0.004000
7	3.826	±	2.464 m	$32.47 \ \pm$	0.38	E-12	(1.2%)	6.6182%	-0.000009	0.000785
8	9.813	±	2.914 m	$17.43 \pm$	0.46	E-12	(2.7%)	0.3582%	-0.000037	0.057407
9	8.720	±	3.746 m	$17.05 \pm$	0.28	E-12	(1.7%)	4.0402%	-0.000003	0.000463
10	-3.916	±	2.882 m	$26.75 \ \pm$	0.36	E-12	(1.4%)	1.3584%	-0.000007	0.002517
11	0.739	±	1.341 m	$84.10\ \pm$	0.59	E-12	(0.7%)	1.5298%	0.000003	0.000674
12	1.632	±	1.518 m	$67.31 \ \pm$	0.56	E-12	(0.8%)	0.8010%	-0.000003	0.001483
13	1.340	±	1.047 m	$103.70\ \pm$	0.70	E-12	(0.7%)	0.7524%	-0.000001	0.000363
14	915.785	±	875.824 μ	160.23 ±	0.89	E-12	(0.6%)	0.7975%	-0.000003	0.001108
15	0.359	±	2.214 m	$50.98\ \pm$	0.45	E-12	(0.9%)	-0.4512%	-0.000001	0.000613
16	0.560	±	1.379 m	$113.76\ \pm$	0.69	E-12	(0.6%)	1.0989%	-0.000008	0.002595
17	2.729	±	2.049 m	$84.94 \ \pm$	0.57	E-12	(0.7%)	-0.0929%	0.000002	0.008772
18	3.045	±	1.502 m	72.16 \pm	0.53	E-12	(0.7%)	-0.0448%	-0.000005	0.042497
19	3.854	±	1.476 m	$104.79\ \pm$	0.64	E-12	(0.6%)	0.4539%	0.000003	0.001565
20	4.353	±	1.944 m	$74.84 \ \pm$	0.52	E-12	(0.7%)	1.1359%	-0.000006	0.001371
21	4.084	±	2.696 m	$62.87 \ \pm$	0.48	E-12	(0.8%)	1.6533%	-0.000003	0.000450
22	7.857	±	4.784 m	$36.55 \pm$	0.41	E-12	(1.1%)	0.7477%	-0.000020	0.006991

Age	$=289.886\pm$	0.751 Ma	Wt. Mean Age = 274.63 ± 790	.31 Ma	(1719)			
40Ar*	* / 39K =	$29.365 \pm$	0.066	Total 39K Vol	= 4.1370E-0011 ccNTP/g			
				Total 40Ar* Vol =	$1.215 \pm 0.002 \text{ E-9}$			
(40Ar	/ 36Ar)sam = 18	620.43±1668.70)	Total Atm 40Ar Vol = 1	.9590E-0011 ccNTP/g			
(36Ar	/ 40 Ar)sam = 0.0	00005370 ± 0.000	000675	Corr 36/40 & 39/40 ratio	os =-0.548679			
(37Ar	/ 40 Ar) sam = 0.0	00022717 ± 0.000	007056	Corr 36/40 & 37/40 ratio	os =-0.006129			
(39Ar	/ 40 Ar) sam = 0.0	03351381 ±0.000	006089	Corr 37/40 & 39/40 ratio	os =0.002917			
37Ca /	39K = 6.	778 ± 2.105 E-3		38Cl / 39K = 2.1	79 ± 0.432 E-3			
C	a / K =	1.244 ± 0.386 E-	-2	Cl/K = 4.5	$577 \pm 0.907 \text{ E-4}$			
F1 = -4	4.835 E-6			F2 = 1.176 E-3				

DP11-125b P57-009 amphibole

Fractions:

No		Name		Te	mp Cu	ım 39K			Age			40Ar*	/ 39K	
1	9-01	1.5W	14-Fe	19	(0.03904	2	17.503	±	10.342	Ma	21.585	± 1	.09
2	9-02	1.7W	14-Fe	20	(0.04616	12	21.937	±	41.222	Ma	11.780	± 4	.12
3	9-03	2.0W	14-F	21	().17701	1	73.720	±	3.067	Ma	17.028	± 0	.32
4	9-04	2.1W	14-Fe	22	().28562	2	04.476	±	2.993	Ma	20.218	± 0	.31
5	9-05	3.5W	15-Fe	23	().47750	3	84.476	±	1.604	Ma	40.014	± 0	.19
6	9-06	4.5W	20kHz	24	().63000	3	83.772	±	2.614	Ma	39.932	± 0	.30
7	9-07	4.5W	20kHz	25	().74356	34	40.223	±	3.513	Ma	34.962	± 0	.40
8	9-08	4.5W	20kHz	26	(0.80708	3	60.927	±	5.191	Ma	37.310	± 0	.59
9	9-09	4.5W	20kHz	27	().93391	3	62.512	±	2.860	Ma	37.491	± 0	.33
10	9-10	5.0W	20kHz	28	1	.00000	4:	51.910	±	5.054	Ma	47.954	± 0	0.61
No		Name		Cum	36S		40Ar	/ 36Ar			40	ArAcc/g		37Ca / 39K
1	9-01	1.5W	14-Fe	0.21	470	1064	4.11 ±	13	8.36		3.0E-0012	-	$1.190 \pm$	0.045
2	9-02	1.7W	14-Fe	0.24	331	86	9.87 ±	58	31.63		3.9E-0013		$1.346 \pm$	0.206
3	9-03	2.0W	14-F	0.292	271	912	$8.80 \pm$	494	0.22		6.8E-0013	57	$75.829 \pm$	12.093 m
4	9-04	2.1W	14-Fe	0.35	520	706	8.74 ±	242	7.08		8.8E-0013	56	$58.253 \pm$	21.851 m
5	9-05	3.5W	15-Fe	0.51	132	998	$8.03 \pm$	102	6.84		2.1E-0012	26	53.321 ±	21.343 m
6	9-06	4.5W	20kHz	0.59	090	15282	2.79 ±	543	4.80		1.1E-0012	71	$1.537 \pm$	15.825 m
7	9-07	4.5W	20kHz	0.67	509	9422	2.04 ±	266	2.38		1.2E-0012		$1.483~\pm$	0.021
8	9-08	4.5W	20kHz	0.70	598	15822	2.26 ±	1016	8.45		4.1E-0013		$1.507~\pm$	0.035
9	9-09	4.5W	20kHz	0.86	017	6334	4.61 ±	91	0.31		2.1E-0012		$1.877~\pm$	0.033
10	9-10	5.0W	20kHz	1.00	000	4734	4.07 ±	75	6.86		1.9E-0012		$2.954 \ \pm$	0.042
No		3	8C1 / 391	K		40Ar*	Vol	ссМТ	TP/g		A	tm Cont	F1	F2
1	ϵ	5.418	± 7.	293 m	7.70	±	0.39	E-12	(5.0%)	27.7696%		-0.000849	0.010860
2	-12	2.359	± 57.	291 m	766.87	± 26	64.76	E-15	(34.5%)	33.9707%		-0.000960	0.017070
3	-8	3.166	± 2.	602 m	20.36	±	0.38	E-12	(1.9%)	3.2370%		-0.000411	0.076653
4	14	1.690	± 7.	197 m	20.07	±	0.32	E-12	(1.6%)	4.1804%		-0.000405	5 0.050121
5	1	.993	± 1.	276 m	70.16	±	0.44	E-12	(0.6%)	2.9585%		-0.000188	0.017325
6	5	5.411	± 2.	064 m	55.65	±	0.48	E-12	(0.9%)	1.9335%		-0.000508	0.068963
7	2	2.152	± 2.	417 m	36.28	±	0.38	E-12	(1.0%)	3.1363%		-0.001058	0.096656
8	-7	7.445	± 7.	420 m	21.66	±	0.29	E-12	(1.3%)	1.8676%		-0.001075	5 0.148189
9	4	4.211	± 2.	001 m	43.46	±	0.38	E-12	(0.9%)	4.6648%		-0.001339	0.076648
10	17	7.004	± 8.	558 m	28.96	±	0.34	E-12	(1.2%)	6.2420%		-0.002107	0.069022

Age	$= 326.158 \pm$	1.277 Ma	Wt. Mean Age = 332.04	± 774.96 Ma (79	90.5)
40Ar*	/ 39K =	33.383 ±	0.139	Total 39K Vol	= 9.1389E-0012 ccNTP/g
				Total 40Ar* Vol =	3.051 ± 0.012 E-10
(40Ar	/ 36Ar)sam =	6832.87±	498.80	Total Atm 40Ar Vo	bl = 1.3790E-0011 ccNTP/g
(36Ar	(40 Ar) sam = 0.0	00014635 ±0.000	001479	Corr 36/40 & 39/40	ratios = -0.607422
(37Ar	(40 Ar) sam = 0.0	03008023 ±0.000	25269	Corr 36/40 & 37/40	ratios =-0.263470
(39Ar	(40 Ar) sam = 0.0	02866029 ±0.000	10281	Corr 37/40 & 39/4	0 ratios =0.340369
37Ca /	$39K = 1.050 \pm 0$	0.008		38Cl / 39K = 3.327	± 1.347 E-3
	Ca / K =	1.926 ± 0.015		Cl/K=	6.986 ± 2.830 E-4
F1 = -7	7.487 E-4			F2 = 5.360 E-2	

DP11-133 P57-041 muscovite

ons:										
Name	Te	mp C	um 39K			Age			40Ar* / 39K	
41-01	1.6W	1-F	1	0.01678	87.850	±	5.012	Ma	$8.406 \ \pm$	0.49
41-02	3.5W	1-F	2	0.07223	93.634	±	1.748	Ma	$8.974~\pm$	0.17
41-03	4.5W	20kH	3	0.12895	96.321	±	1.567	Ma	$9.239 \ \pm$	0.15
41-04	4.5W	20kH	4	0.44228	112.146	±	0.432	Ma	$10.804 \ \pm$	0.04
41-05	4.5W	20kH	5	0.53344	118.435	±	1.384	Ma	$11.430\ \pm$	0.14
41-06	4.5W	20kH	6	0.61154	123.812	±	0.912	Ma	$11.967 \ \pm$	0.09
41-07	4.5W	20kH	7	0.66569	125.479	±	1.387	Ma	$12.134\ \pm$	0.14
41-08	4.5W	20kH	8	0.70421	124.651	±	1.994	Ma	$12.051 \ \pm$	0.20
41-09	4.5W	20kH	9	0.71861	130.957	±	5.667	Ma	$12.683 \ \pm$	0.57
41-10	5.0W	20kH	10	0.95403	131.274	±	0.445	Ma	$12.715 \ \pm$	0.04
41-11	5.0W	20kH	11	0.97905	153.533	±	5.076	Ma	$14.964\ \pm$	0.52
41-12	6.0W	20kH	12	1.00000	160.529	±	5.694	Ma	$15.677 \ \pm$	0.58
	Name 41-01 41-02 41-03 41-04 41-05 41-06 41-07 41-08 41-09 41-10 41-11 41-12	Name Te 41-01 1.6W 41-02 3.5W 41-03 4.5W 41-04 4.5W 41-05 4.5W 41-06 4.5W 41-07 4.5W 41-08 4.5W 41-09 4.5W 41-01 5.0W 41-11 5.0W	Name Temp C 41-01 1.6W 1-F 41-02 3.5W 1-F 41-03 4.5W 20kH 41-04 4.5W 20kH 41-05 4.5W 20kH 41-06 4.5W 20kH 41-07 4.5W 20kH 41-08 4.5W 20kH 41-09 4.5W 20kH 41-07 5.0W 20kH 41-08 4.5W 20kH 41-09 4.5W 20kH 41-10 5.0W 20kH 41-10 5.0W 20kH 41-11 5.0W 20kH	NameTempCum39K41-011.6W1-F141-023.5W1-F241-034.5W20kH341-044.5W20kH441-054.5W20kH541-064.5W20kH641-074.5W20kH741-084.5W20kH841-094.5W20kH941-105.0W20kH1041-115.0W20kH1141-126.0W20kH12	Name Temp Cum 39K 41-01 1.6W 1-F 1 0.01678 41-02 3.5W 1-F 2 0.07223 41-03 4.5W 20kH 3 0.12895 41-04 4.5W 20kH 4 0.44228 41-05 4.5W 20kH 5 0.53344 41-06 4.5W 20kH 6 0.61154 41-07 4.5W 20kH 7 0.66569 41-08 4.5W 20kH 8 0.70421 41-09 4.5W 20kH 9 0.71861 41-10 5.0W 20kH 10 0.95403 41-11 5.0W 20kH 11 0.97905 41-12 6.0W 20kH 12 1.00000	Name Temp Cum 39K 41-01 1.6W 1-F 1 0.01678 87.850 41-02 3.5W 1-F 2 0.07223 93.634 41-03 4.5W 20kH 3 0.12895 96.321 41-04 4.5W 20kH 4 0.44228 112.146 41-05 4.5W 20kH 5 0.53344 118.435 41-06 4.5W 20kH 6 0.61154 123.812 41-07 4.5W 20kH 7 0.66569 125.479 41-08 4.5W 20kH 8 0.70421 124.651 41-09 4.5W 20kH 9 0.71861 130.957 41-10 5.0W 20kH 10 0.95403 131.274 41-11 5.0W 20kH 11 0.97905 153.533 41-12 6.0W 20kH 12 1.00000 160.529	NameTempCum $39K$ Age41-01 $1.6W$ $1-F$ 1 0.01678 87.850 \pm 41-02 $3.5W$ $1-F$ 2 0.07223 93.634 \pm 41-03 $4.5W$ $20kH$ 3 0.12895 96.321 \pm 41-04 $4.5W$ $20kH$ 4 0.44228 112.146 \pm 41-05 $4.5W$ $20kH$ 5 0.53344 118.435 \pm 41-06 $4.5W$ $20kH$ 6 0.61154 123.812 \pm 41-07 $4.5W$ $20kH$ 7 0.66569 125.479 \pm 41-08 $4.5W$ $20kH$ 9 0.71861 130.957 \pm 41-09 $4.5W$ $20kH$ 10 0.95403 131.274 \pm 41-10 $5.0W$ $20kH$ 11 0.97905 153.533 \pm 41-12 $6.0W$ $20kH$ 12 1.00000 160.529 \pm	NameTempCum $39K$ Age41-01 $1.6W$ $1-F$ 1 0.01678 87.850 ± 5.012 41-02 $3.5W$ $1-F$ 2 0.07223 93.634 ± 1.748 41-03 $4.5W$ $20kH$ 3 0.12895 96.321 ± 1.567 41-04 $4.5W$ $20kH$ 4 0.44228 112.146 ± 0.432 41-05 $4.5W$ $20kH$ 5 0.53344 118.435 ± 1.384 41-06 $4.5W$ $20kH$ 6 0.61154 123.812 ± 0.912 41-07 $4.5W$ $20kH$ 7 0.66569 125.479 ± 1.387 41-08 $4.5W$ $20kH$ 8 0.70421 124.651 ± 1.994 41-09 $4.5W$ $20kH$ 9 0.71861 130.957 ± 5.667 41-10 $5.0W$ $20kH$ 10 0.95403 131.274 ± 0.445 41-11 $5.0W$ $20kH$ 11 0.97905 153.533 ± 5.076 41-12 $6.0W$ $20kH$ 12 1.00000 160.529 ± 5.694	NameTempCum $39K$ Age41-011.6W1-F10.01678 87.850 ± 5.012 Ma41-023.5W1-F20.07223 93.634 ± 1.748 Ma41-034.5W20kH30.12895 96.321 ± 1.567 Ma41-044.5W20kH40.44228112.146 \pm 0.432Ma41-054.5W20kH50.53344118.435 \pm 1.384Ma41-064.5W20kH60.61154123.812 \pm 0.912Ma41-074.5W20kH70.66569125.479 \pm 1.387Ma41-084.5W20kH80.70421124.651 \pm 1.994Ma41-094.5W20kH90.71861130.957 \pm 5.667Ma41-105.0W20kH100.95403131.274 \pm 0.445Ma41-115.0W20kH110.97905153.533 \pm 5.076Ma	NameTempCum $39K$ Age $40Ar^*/39K$ 41-01 $1.6W$ $1-F$ 1 0.01678 87.850 \pm 5.012 Ma 8.406 \pm 41-02 $3.5W$ $1-F$ 2 0.07223 93.634 \pm 1.748 Ma 8.974 \pm 41-03 $4.5W$ $20kH$ 3 0.12895 96.321 \pm 1.567 Ma 9.239 \pm 41-04 $4.5W$ $20kH$ 4 0.44228 112.146 \pm 0.432 Ma 10.804 \pm 41-05 $4.5W$ $20kH$ 5 0.53344 118.435 \pm 1.384 Ma 11.430 \pm 41-06 $4.5W$ $20kH$ 6 0.61154 123.812 \pm 0.912 Ma 11.967 \pm 41-07 $4.5W$ $20kH$ 7 0.66569 125.479 \pm 1.387 Ma 12.134 \pm 41-08 $4.5W$ $20kH$ 8 0.70421 124.651 \pm 1.994 Ma 12.051 \pm 41-09 $4.5W$ $20kH$ 9 0.71861 130.957 \pm 5.667 Ma 12.683 \pm 41-10 $5.0W$ $20kH$ 10 0.95403 131.274 \pm 0.445 Ma 12.715 \pm 41-11 $5.0W$ $20kH$ 11 0.97905 153.533 \pm 5.076 Ma 14.964 \pm 41-12 $6.0W$ $20kH$ 12 1.00000 160.529 \pm 5.694 </td

No	Name	Cum 36S	40Ar/36/	Ar	40ArAcc/g 3	7Ca / 39K	
1	41-01 1.6W 1-F	0.34236	$389.98 \pm$	7.25	1.7E-0011	$27.368 \pm$	16.853 m
2	41-02 3.5W 1-F	0.50256	$1007.78 \pm$	45.99	7.8E-0012	$46.366 \pm$	4.378 m
3	41-03 4.5W 20kH	0.61137	$1399.79\pm$	85.54	5.3E-0012	$23.188 \pm$	10.752 m
4	41-04 4.5W 20kH	0.84057	$3682.32 \pm$	143.32	1.1E-0011	$26.543 \pm$	0.928 m
5	41-05 4.5W 20kH	0.86075	$12139.68 \pm$	5371.46	9.8E-0013	$21.008 \pm$	6.950 m
6	41-06 4.5W 20kH	0.88372	$9623.21\pm$	2300.72	1.1E-0012	$23.709\pm$	6.381 m
7	41-07 4.5W 20kH	0.87926	$-33469.33\pm$	42215.69	-2.2E-0013	$23.324 \pm$	10.021 m
8	41-08 4.5W 20kH	0.88106	$59501.96 \pm$	189881.81	8.7E-0014	$-7.875 \pm$	6.856 m
9	41-09 4.5W 20kH	0.88037	-60848.66 \pm	557260.19	-3.3E-0014	$\textbf{-28.394} \pm$	20.053 m
10	41-10 5.0W 20kH	0.93073	$13926.08 \pm$	1929.09	2.4E-0012	$52.280 \pm$	1.329 m
11	41-11 5.0W 20kH	0.94945	$4882.44 \pm$	2552.13	9.1E-0013	$118.808 \pm$	13.146 m
12	41-12 6.0W 20kH	1.00000	$1785.30 \pm$	320.79	2.5E-0012	$88.082 \pm$	16.476 m

No	38Cl/39K		40Ar*	Vol co	eNTP/g		Atm Cont	F1	F2
1	-6.932 ± 6.099	m	5.32 \pm	0.31	E-12 (5.8%)	75.7725%	-0.000020	0.000066
2	$0.418 ~\pm~ 1.645$	m	$18.78 \ \pm$	0.37	E-12 (2.0%)	29.3220%	-0.000033	0.000994
3	0.013 ± 1.389	m	$19.77 \ \pm$	0.34	E-12 (1.7%)	21.1103%	-0.000017	0.000757
4	1.663 ± 0.362	m	$127.73 \ \pm$	0.78	E-12 (0.6%)	8.0248%	-0.000019	0.002301
5	-0.345 ± 1.095	m	$39.31 \ \pm$	0.49	E-12 (1.3%)	2.4342%	-0.000015	0.006031
6	3.799 ± 0.438	m	35.26 \pm	0.32	E-12 (0.9%)	3.0707%	-0.000017	0.005120
7	$0.547 ~\pm~ 4.314$	m	$24.79 \ \pm$	0.30	E-12 (1.2%)	-0.8829%	-0.000017	0.018486
8	-0.724 ± 2.481	m	$17.52 \pm$	0.29	E-12 (1.7%)	0.4966%	0.000006	0.010922
9	-3.198 ± 7.892	m	$6.89 \hspace{0.2cm} \pm \hspace{0.2cm}$	0.31	E-12 (4.5%)	-0.4856%	0.000020	0.036858
10	1.934 ± 0.618	m	$112.94\ \pm$	0.66	E-12 (0.6%)	2.1219%	-0.000037	0.015381
11	-6.081 ± 7.112	m	$14.13 \ \pm$	0.48	E-12 (3.4%)	6.0523%	-0.000085	0.009989
12	-2.412 ± 4.279	m	$12.39\ \pm$	0.45	E-12 (3.6%)	16.5519%	-0.000063	0.002271

Integrated Results:

Age = $119.382 \pm$	0.428 Ma	Wt. N	Mean A	Age =	120.33	± 39.38	Ma (146.19)	
40Ar* / 39K =	$11.525 \pm$	0.043				Total 39K	K Vol	= 3.7730E-0011 ccNTP/g
						Total 40A	ar* Vol =	$4.348 \pm 0.016 \ \text{E-10}$
(40Ar / 36Ar)sam =	2938.17 ±	=	75.39			Total Atn	n 40Ar Vol = 4.8	8622E-0011 ccNTP/g
(36 Ar / 40 Ar) sam = 0.0)0034035 ±0.000	01174				Corr 36/4	0 & 39/40 ratios	s =-0.622419
(37 Ar / 40 Ar) sam = 0.0	00266172 ± 0.000)11104				Corr 36/4	0 & 37/40 ratios	s=-0.043877
(39 Ar / 40 Ar) sam = 0.0	07804351 ±0.000	021574				Corr 37/4	0 & 39/40 ratios	s =0.058779

 $37Ca / 39K = 3.411 \pm 0.142 \text{ E-2}$ $Ca / K = 6.258 \pm 0.261 \text{ E-2}$ F1 = -2.433 E-5 $38CI / 39K = 9.022 \pm 4.318 \text{ E-4}$ $CI / K = 1.895 \pm 0.907 \text{ E-4}$ F2 = 2.156 E-3

DP11-133 P57-036 garnet

Fractions:

No		Name	Ter	np	Cum	39K		Age				4	40Ar* / 39K
1	#34	TF 3.5W	19 - J	0	0.2	9657	452.2	271 ± 186.303		Ma	47.99	7 ±	22.35
	2	#36 TF 5.0W	10-Feb-1	1		00000.	3	332.904 ± 100.3	350 Ma		34.139	±	11.27
No		Name	Cı	ım 36S				40Ar / 36Ar		40ArAcc/g			37Ca / 39K
1	#34	b 3.5W 19-J	0	.74422		-249.53	$3\pm$	187.74	-	-3.5E-0013	6	40.20	8 ± 144.395
2	#36	TF 10-Feb-	1	1.00000	-	2379.94	4 ±	7022.32		-1.2E-0013	186.0	75 ±	9.516
No		38C1/	39K			4	0Ar* V	/ol ccNTP/g		Atm Cont	F1		F2
1		15.225 ± 299	9.410 m	647.73	±	284.53	E-15	(43.9%)	-1	18.4206%	-0.456	672	2.412509
2		82.614 ± 74	4.615 m	1.09	±	0.36	E-12	(32.7%))	-12.4163%	-0.132	730	1.368428

Age	$= 369.135 \pm$	88.754 Ma	Wt. Mean Age = 357.71	88.34 Ma	(0.306)
40Ar*	* / 39K =	$38.249 \pm$	10.450	Total 39K Vol	= 4.5505E-0014 ccNTP/g
				Total 40Ar* Vol =	$1.741 \pm 0.457 \text{ E-12}$
(40Ar	/ 36Ar)sam =	-794.45	± 746.04	Total Atm 40 Ar Vol = -4.	718E-0013ccNTP/g
(36Ar	/ 40Ar)sam =-0.0	00125874 ± 0.00	0200651	Corr 36/40 & 39/40 ratios	=-0.789321
(37Ar	/ 40Ar)sam =11.	50531138 ±4.0	2226722	Corr 36/40 & 37/40 ratios	=-0.807695
(39Ar	/ 40 Ar = 0.0	03586949 ± 0.01	283100	Corr 37/40 & 39/40 ratios	=0.977221
37Ca /	$39K = 3.208 \pm$	0.244 E 2		$38C1 / 39K = 0.626 \pm 1.03$	32 E-1
Ca /	K = 5.88	$86\pm0.447 \to 2$		$Cl/K = 1.315 \pm$	2.167 E-2
F1 = -2	2.288 E-1			F2 = 1.791	

DP11-136 P57-030 muscovite

No		Name		Temp	o Cum	39K				Age	4	0Ar* / 39K		
1	30-01	3.5W 1	6-J	1	0.0	1492	ϵ	67.655	±	1.526	Ma	6.437 ± 0	.15	
2	30-02	4.5W 2	0kH	2	0.0	1896	6	58.397	±	3.347	Ma	6.509 ± 0	.32	
3	30-03	4.5W 2	0kH	3	0.0	3986	7	75.388	±	0.831	Ma	7.189 ± 0	.08	
4	30-04	4.5W 2	0kH	4	0.2	2526	9	96.679	±	0.445	Ma	9.274 ± 0	.04	
5	30-05	4.5W 2	0kH	5	0.2	8330	9	95.733	±	0.425	Ma	9.181 ± 0	.04	
6	30-06	4.5W 2	0kH	6	0.3	5618	10)1.132	±	0.422	Ma	9.713 ± 0	.04	
7	30-07	4.5W 2	0kH	7	0.4	3072	10)3.239	±	0.430	Ma	9.921 ± 0	.04	
8	30-08	4.5W 2	0kH	8	0.4	9371	10	0.343	±	0.501	Ma	9.635 ± 0	.05	
9	30-09	4.5W 2	0kH	9	0.6	7915	10)5.565	±	0.377	Ma 10	0.151 ± 0	.04	
10	30-10	4.5W 2	0kH	1() 0.7	0454	10)8.067	±	0.715	Ma 10	0.399 ± 0	.07	
11	30-11	4.5W 2	0kH	1	0.7	4045	10)9.814	±	0.468	Ma 10	0.573 ± 0	.05	
12	30-12	4.5W 2	0kH	12	2 0.7	7026	11	2.869	±	0.445	Ma 10	0.876 ± 0	.04	
13	30-13	4 5W 2	0kH	13	3 0.8	0627	11	2 811	+	0.458	Ma 1	0.870 ± 0	05	
14	30-14	5 OW 2	0kH	14	0.0 0.0	9685	12	21.025	+	0.190	Ma 1	1.689 ± 0	03	
15	30-15	5.5W 2	0kH	14	5 0.9	9288	12	21.025	+	0.359	Ma 1	2558 ± 0	04	
16	30-16	5.5W 2	0kH	1.	5 10	0000	14	58 251	- +	2 274	Ma 1	6.467 ± 0	23	
10	50-10	5.5 W 2	OKH	IV.	5 1.0	0000	П	50.251	-	2.274	ivia i	0.407 ± 0	.25	
No		Name		Cum 369	2		40 A r	/ 361 r			$40 \Lambda r$	Acc/g	37Ca	/ 30K
1	30-01	3 5W	16 I	0.00460)	18	54 24+	י גער א ר	20.05		5 0E-0012	6 750 +	3 780	m
2	30.02	1.5W	2012U	0.0240	, I	15	37 66±	2	20.05		1.7E.0012	$0.739 \pm$	0 201	m
2	30-02	4.5W	20kH	0.1272)	61	60 20±	120	20.14		1.7E-0012 2.1E-0012	$17.220 \pm 2.272 \pm$	2 740	m
1	30.04	4.5W	20KH	0.1005	,)	121	$10.29 \pm 10.67 \pm 10.67 \pm 10.67 \pm 10.0000000000000000000000000000000000$	204	52 50		2.1E-0012	$2.272 \pm$	0.535	m
т 5	30.05	4.5W	20KH	0.37272	,	131	$10.07 \pm$	20.	00 50		1.1E-0011 3 4E 0012	$2.+38 \pm$	1 006	m
5	30.06	4.5W	20KH	0.4372.	2	84	$01.27 \pm$	1	57.05		7.0E.0012	$1.332 \pm 3.810 \pm$	1.550	m
0	20.07	4.5W	2060	0.5/150) I	110	42.02 L	4 11/	70 00		7.0E-0012	$3.610 \pm$	0.744	111
0	20.08	4.5W	2060	0.0096	1	110	$42.03\pm$	11	/ 0.00		5.2E-0012	$1.033 \pm 5.652 \pm$	0.744	111
0	20.00	4.5 W	20KH	0.70095	1	202	94.09±	14.	24.39		3.1E-0012	$5.032 \pm$	0.920	m
9	20.10	4.5W	20KH	0.91120)	205	$40.31\pm$	200	55.09		7.0E-0012	$1.713 \pm$	1.001	III
10	20.11	4.5W	2060	0.92320))	202	19.20±	1002)5.05 77 1 1		0.5E-0015	$1.047 \pm 2.250 \pm$	1.991	111
11	20.12	4.5W	20KH	0.94543) (292	49.33±	1097	7.04		1.1E-0012	$5.539 \pm$	1.240	III
12	20.12	4.5W	2060	0.94000))	920 600	4/.10±	5064	7.04		2.8E-0013	$0.397 \pm$	1.337	111
13	20.14	4.3 W	20KH	0.9374	/	099	$70.41\pm$	2044	19.33 52.00		4.3E-0013	$-0.934 \pm$	1.300	
14	20.15	5.0W	20KH	0.9777	-	1004	$04.14\pm$	294.)2.98)2.52		1.1E-0012	304.300 ± 3	/9.138	μ
15	30-15	5.5W	20KH	0.9948:))	1084	$41.60\pm$	34/2	22.53		9.0E-0013	$2.689 \pm$	0.4/9	m
10	30-10	5.5 W	20KH	1.00000)	333	18./9±	347	0.03		2.7E-0013	$12.925 \pm$	0.388	m
No		38C1	/ 39K		4	0Ar*	Vol	ссNТ	P/g		Atm Cont	F1		F2
1	1.	$898 \pm$	1.586	m	26.14	±	0.60	E-12	(2.3%)	15.9365%	-0.00000	5 0.0	00452
2	14.	636 ±	3.291	m	7.15	±	0.36	E-12	Ì	5.0%)	19.2175%	-0.00001	2 0.0	00905
3	2.	$458 \pm$	1.176	m	40.90	±	0.48	E-12	Ì	1.2%)	4.7968%	-0.00000	2 0.0	00516
4	1.	$675 \pm$	0.215	m	467.91	±	3.02	E-12	Ì	0.6%)	2.2539%	-0.00000	2 0.0	00939
5	1.	$848 \pm $	0.474	m	145.03	±	0.80	E-12	Ì	0.6%)	2.2729%	-0.00000	1 0.0	00768
6	2.	143 ±	0.416	m	192.65	±	1.17	E-12	Ì	0.6%)	3.5151%	-0.00000	3 0.0	00885
7	1.	234 ±	0.651	m	201.25	±	1.18	E-12	Ì	0.6%)	2.4953%	-0.00000	1 0.0	00530
8	1	021 +	0 759	m	165 17	+	1 13	E-12	$\tilde{(}$	0.7%)	2.9866%	-0.00000	4 0.0	01567
9	1	609 +	0.230	m	512.31	+	2.94	E-12	$\tilde{(}$	0.6%)	1 4523%	-0.00000	1 0.0	00945
10	1	939 ±	1.215	m	71.86	- ±	0.59	E-12	í	0.8%)	0.8661%	-0.00000	1 0.0	00950
11	2	050 +	0.669	m	103.32	 .+	0.66	E-12	(0.6%)	1.0103%	-0.00000	2 0.0	02562
12		698 ±	0.536	m	88.24		0.56	E-12	Ì	0.6%)	0.3210%	-0.00000	0.0	00935
13	2	$246 \pm$	0.503	m	106.50	- ±	0.66	E-12	í	0.6%)	0.4223%	0.00000	1 0.0	01711
14		899 ±	0.487	m	288.15	±	1.55	E-12	(0.5%)	0.3659%	-0.00000	1 0.0	01659
15	1.	987 ±	0.216	m	328.18	±	1.74	E-12	(0.5%)	0.2725%	-0.00000	2 0.0	06427
16	2.	817 ±	3.277	m	31.93	±	0.31	E-12	Ì	1.0%)	0.8367%	-0.00000	9 0.0	07613

DP11-136 P57-030 muscovite

Age	$= 106.085 \pm$	0.260 Ma	Wt. Mean Age = 108.95	± 87.04 Ma (728.6)	
40Ar*	= / 39K =	$10.203 \pm$	0.022	Total 39K Vol	= 2.7215E-0010 ccNTP/g
				Total 40Ar* Vol =	$2.777 \pm 0.006 \text{ E-9}$
(40Ar	/ 36Ar)sam = 159	$976.35 \pm$	782.11	Total Atm 40Ar Vol = 5.2	326E-0011 ccNTP/g
(36Ar	(40 Ar) sam = 0.0	00006259 ± 0.000	000429	Corr 36/40 & 39/40 ratios =	-0.468676
(37Ar	(40 Ar) sam = 0.0	00023208 ± 0.000	002658	Corr 36/40 & 37/40 ratios =	-0.007223
(39Ar	(40 Ar) sam = 0.0	09619767 ±0.000	012912	Corr 37/40 & 39/40 ratios =	0.007456
37Ca /	$39K = 2.413 \pm 0$	0.276 E-3		$38C1/39K = 1.805 \pm 0.12$	27 E-3
C	a/K =	4.427 ± 0.507 E-	-3	Cl/K = 3.79	$0 \pm 0.266 \text{ E-4}$
F1 = -1	.721 E-6			F2 = 1.033 E-3	

DP11-137 P57-029 muscovite

No	Name		Temp	Cum 39K		1	Age		40Ar*	/ 39K	
1	29-01 3.5W 2	29-J	1	0.00277	69.4	$\pm 00 \pm$	81.243	Ma	6.607	± 7	.88
2	29-02 4.5W 2	20kH	2	0.00971	18.8	$38 \pm$	47.228	Ma	1.768	± 4	.46
3	29-03 4.5W 2	20kH	3	0.33551	107.0	$83 \pm$	0.811	Ma	10.302	± 0	0.08
4	29-04 4.5W 2	20kH	4	0.42669	121.0	$86 \pm$	2.371	Ma	11.695	± 0	0.24
5	29-05 4.5W 2	20kH	5	0.57260	123.2	24 ±	1.284	Ma	11.908	± 0	0.13
6	29-06 4.5W 2	20kH	6	0.63974	125.4	$89 \pm$	2.492	Ma	12.135	± 0	.25
7	29-07 4.5W 2	20kH	7	0.69764	126.6	$53 \pm$	3.929	Ma	12.252	± 0	0.39
8	29-08 4.5W 2	20kH	8	0.74202	127.1	95 ±	4.713	Ma	12.306	± 0	0.47
9	29-09 4.5W 2	20kH	9	0.95247	135.8	92 ±	0.951	Ma	13.179	± 0	0.10
10	29-10 4.5W 2	20kH	10	0.97211	126.5	65 ±	8.659	Ma	12.243	± 0	0.87
11	29-11 5.0W 2	20kH	11	1.00000	143.7	33 ±	7.242	Ma	13.971	± 0	0.73
No	Name		Cum 36S		40Ar / 36	Ar		40ArAcc/g			37Ca / 39K
1	29-01 3.5W 2	29-J	0.06807	1512	2.75 ±	7420.97		5.9E-0014	-	-0.771 ±	596.856 m
2	29-02 4.5W 2	20kH	0.46359	435	5.99 ±	522.35		3.5E-0013	-	$-8.628 \pm$	183.019 m
3	29-03 4.5W 2	20kH	0.62595	93857	7.62 ± 22	7538.38		1.4E-0013		5.148 ±	2.335 m
4	29-04 4.5W 2	20kH	0.74163	42017	7.43 ± 11	7950.63		1.0E-0013		6.251 ±	5.884 m
5	29-05 4.5W 2	20kH	0.63480	-7331(0.43 ± 17	1790.39		-9.3E-0014		4.924 ±	5.753 m
6	29-06 4 5W 2	20kH	0.71009	49276	6.37 ± 16	4579 70		6 6E-0014	1	1 935 +	6 770 m
7	29-07 4 5W 20k	-UКП -Ч	0.68831	-147155	5.97 ± 10	1275 52		-1 QE_0014	1	$11.955 \pm$ $14.075 \pm$	11 0/5 m
/ 0	29-07 4.5 W 20K		0.000001	14220	0.90 ± 233			1.5E 0012		14.975±	11.945 III
8	29-08 4.5 W 20k	CH	0.86432	14339	2.98 ± 2.3	828.20		1.5E-0013		-2.658 ±	25.232 m
9	29-09 4.5W 201	kН	0.75757	-11/290	0.00 ± 32	6762.46		-9.3E-0014		$20.804 \pm$	3.221 m
10	29-10 4.5W 20k	Ή	1.0034	4721	.61 ±	4975.88		2.1E-0013		$11.090 \pm$	29.328m
11	29-11 5.0W 201	kН	1.00000	-508571.	.55 ±4554	9478.61		-3.0E-0015	-	-24.548 ±	25.410m
No	38C1/39K			40Ar* Vo	l ccNTP/9			Atm Cont	F1 F2		
1	111 554 +	111 795	m 244	66 + 29	0152 E-	15 (119.2%)	19 5339%		0.000001	0 000039
2	$9635 \pm$	32 463	m 164	00 ± 2	3 40 E-	15 (252.0%)	67 7765%		0.000006	5 0.000185
2	2.012 +	0.630	m 14	85 +	0.41 E	13 (. 12 (0.0%	0.31/8%			0.000183
1	$2.012 \pm 2.508 \pm 100$	1 / 20	m 14	25 ±	0.41 L-	12 (21%	0.7033%			1 0.006188
т 5	$2.308 \pm 0.768 \pm$	1.729	m 23	·.25 ±	0.29 E-	12 (2.170	0.703370			1 0.000188
6	$-0.708 \pm 2.272 \pm$	1.501	m 10	.22 ±	0.23 E-	12 (1.170	-0.403170			0.008580
0	$2.272 \pm 0.228 \pm$	2.040	III 10	.09 ±	0.25 E-	12 (2.170)	0.399770		-0.000005	0.013273
0	0.338 ± 6.121	2.940	III 9	.40 ±	0.31 E-	12 (3.270)	-0.200870		0.000011	0.047934
8	-0.131 ± 1.107	4.557	m /	$.30 \pm$	0.28 E-	12 (3.8%)	2.000/%		0.000002	2 0.000846
9	1.187 ± 2.050	0.891	m 3/	.06 ±	0.32 E-	12 (0.9%)	-0.2519%		-0.000013	0.054/15
10	-2.858 ±	1.372	m 3	.21 ±	0.23 E-	12 (/.1%)	6.2585%		-0.000008	3 0.001111
11	1.632 ±	4.080	m 5	.21 ±	0.27 E-	12 (5.2%)	-0.0581%		0.000018	3 0.199908
Integra	ated Results:										
Age	$= 120.785 \pm$	0.769 Ma	Wt.	Mean Age	= 120.4	7 ± 29 .	28 Ma	(56.41)			
40Ar*	/ 39K =	11.665 ±	0.077			Total	39K Vol	=	1.336	64E-0011 c	cNTP/g
						Total	404 r* V	ol =	1 559 +	0.010 E-10)
(40.)			010 50			Total		01 –	1.559 ±		,
(40Ar	/ 36 Ar)sam = 530	089.49±58	012.56			Total	Atm 40A	ar Vol = 8.725	2E-001.	3ccNTP/g	
(36Ar	/ 40 Ar) sam = 0.0	00001884 ±	=0.00002903			Corr 36	/40 & 39	/40 ratios = -0	.691528		
(37Ar	/40 Ar) sam = 0.0)0056532 ±	=0.00025796			Corr 36	/40 & 37	/40 ratios = -0.	.011881		
(39Ar	/ 40 Ar)sam = 0.0)8525180 ±	=0.00052870			Corr 37	/40 & 39	/40 ratios =0.0	012802		
37Ca /	$39K = 6.631 \pm 3$	3.026 E-3				38Cl/	′ 39K = 1	.287 ± 0.631	E-3		
Ca /	K = 1.21	17 ± 0.555	E-2			C1 / K	=	2.704 ± 1	325 E-4		
F1 = -4	4.730 E-6					$F_2 = 8$	8.311 E-3				
						12 (

DP11-146 P57-015 biotite

No		Name			Temp Cun	1 39K				Age		40Ar*	/ 39K			
1	15-01	1.7W	13 - J		1 0	.00127	6	82.836	±	42.975	Ma	77.506 ±	F	5.86		
2	15-02	1.7W	13-J		2 0	.00250	3	08.314	±	25.280	Ma	31.396 ±	E S	2.80		
3	15-03	1.8W	13-J		3 0	.00759	2	48.456	±	9.996	Ma	24.874 ±	É	1.07		
4	15-04	2.0W	13-J		4 0	.01479	1	70.349	±	3.150	Ma	16.682 ±	É	0.32		
5	15-05	2.6W	13-J		5 0	.02289	1	67.410	±	2.981	Ma	16.381 ±	E	0.31		
6	15-06	3.5W	13-J		6 0	.11327	1	09.479	±	1.013	Ma	10.539 ±	E	0.10		
7	15-07	3.7W	14-J		7 0	.16194		99.567	±	0.655	Ma	9.559 ±	F	0.06		
8	15-08	4.0W	14-J		8 0	.25074		85.182	±	0.566	Ma	8.145 ±	F	0.06		
9	15-09	4.5W	20kH		90	.36458	1	01.283	±	0.168	Ma	9.728 ±	F	0.02		
10	15-10	4.5W	20kH		10 0	.80081		99.478	±	0.271	Ma	9.550 ±	F	0.03		
11	15-11	4.5W	20kH		11 0	.82670		98.679	±	1.358	Ma	9.471 ±	F	0.13		
12	15-12	4.5W	20kH		12 1	.00000		96.379	±	0.479	Ma	9.244 ±	E '	0.05		
No		Name		Ct	um 36S		40Ar	/ 36Ar			40ArAcc/g		37C:	a / 39K		
1	15-01	1 7W	13-J	0	01898	70	68 56 -	+ 121	46 10		1 0E-0012	-54	464 +	49 567	m	
2	15-02	1 7W	13-I	0	04553	21	84 77 -	+ 12	20.90		1.6E 0012	-121	343 +	48 309	m	
3	15-02	1.7 W	13-I	0	09604	35	67 55 -	+ 16	83 27		2 7E-0012	-3	.975 +	20.677	m	
1	15-04	2.0W	13 J	0	1160/	78	07.00 -	⊥ 10 ⊥ 10	28 65		1.1E-0012	0	.)/3 ±	7 856	m	
- -	15-04	2.0 W	13-J 12 I	0	12062	120	34 70 -	⊥ 19 ⊥ 80	14 41		7.4E 0013	9	$.222 \pm$	12 /1/	m	
5	15-05	2.0 W	13-J 12 I	0	20250	129.	54.70 =	⊏ 09 ∟ 52	72 00		7.4E-0013	9	$.731 \pm$	0 252		
07	15-00	5.5 W	13-J 14 T	0	.20230	220	91./9 = 50.02	± 33 ⊢ 72	12.99		3.9E-0012	ے ۱	.104 ±	0.552	111	
/	15-07	3./W	14-J	0	.22928	229.	39.02 = 95.97	± /3	23.22		1.4E-0012	4	$.555 \pm$	0.364	m	
8	15-08	4.0W	14-J	0	.38684	623	83.8/ = 50.00	± 4	123.39		8.5E-0012	5	$.452 \pm$	0.374	m	
9	15-09	4.5 W	20KH	0	.39336	2217	50.89 = 56.01	± 2279:	58.52		3.5E-0013	58	$1.8/5 \pm$	0.522	m	
10	15-10	4.5W	20kH	0	.86358	118:	56.91 = =	± 9	60.03		2.5E-0011	7	$.618 \pm$	0.438	m	
11	15-11	4.5W	20kH	0	.86247	-2874	70.00±	358208	33.22		-6.0E-0014	16	$307 \pm$	8.001	m	
12	15-12	4.5W	20kH	1	.00000	1549	95.76±	21	37.81		7.4E-0012	7	.337 ±	0.922	m	
No		38Cl	/ 39	К		40Ar*	Vol	ccNT	P/g		А	tm Cont	F1		F2	
1	19.	.434 ±	9.92	21 m	23.52	2 ±	1.77	E-12	(7.5%)	4.180	5%	0.00002	39 0.0	01293	
2	17.	.266 ±	7.8	12 m	9.18	3 ±	0.81	E-12	(8.8%)	13.525	4%	0.0000	87 0.0	01958	
3	10.	.941 ±	2.46	67 m	30.25	5 ±	1.30	E-12	(4.3%)	8.283	0%	0.0000	03 0.0	00143	
4	4.	.685 ±	5.39	98 m	28.7	l ±	0.37	E-12	(1.3%)	3.787	0%	-0.0000	07 0.0	01152	
5	4.	.785 ±	2.39	99 m	31.67	7 ±	0.57	E-12	(1.8%)	2.284	6%	-0.0000	07 0.0	02087	
6	3.	.580 ±	0.60	00 m	227.49) ±	2.04	E-12	(0.9%)	1.679	8%	-0.0000	02 0.0	00990	
7	2.	.216 ±	0.39	93 m	111.09) ±	0.84	E-12	(0.8%)	1.287	1%	-0.0000	03 0.0	02991	
8	2.	.524 ±	0.33	31 m	172.72	2 ±	1.25	E-12	(0.7%)	4.701	0%	-0.0000	04 0.0	01115	
9	1.	.933 ±	0.34	48 m	264.46	5 ±	1.37	E-12	(0.5%)	0.133	3%	-0.00004	42 0.2	72421	
10	2.	.262 ±	0.20)5 m	994.89) ±	5.53	E-12	(0.6%)	2.492	2%	-0.0000	05 0.0	02565	
11	1.	.183 ±	0.92	21 m	58.50	5 ±	0.85	E-12	(1.4%)	-0.102	8%	-0.0000	12 0.1	60695	
12	2.	.257 ±	0.34	44 m	382.58	3 ±	2.37	E-12	(0.6%)	1.907	0%	-0.0000	05 0.0	03354	
Integr	ated Res	ults:														
Age	= 101.7	$790 \pm$	0.3	00 M	a Wt. Mea	n Age =			99.98	3 ± 26	5.52 Ma (2	06.2)				
40Ar*	* / 39K =		9.778	±	0.032				Total	39K Vo	=	2.3881	E-0010	ccNTP/g		
									Total	40Ar* V	vol =	2.335 ± 0.00	.007 E-9			
(40A1	·/ 36Ar)s	am = 1.	3055.27 ±	=	893	3.21			Total	Atm 404	Ar $Vol = 5.407$	79E-0011 o	cNTP/g			
(36A1	·/40Ar)s	am = 0	.0000766	0 ± 0	0000733			Corr	36/40) & 39/4() ratios =-0 50	5536				
$(37 \text{ Ar} / 40 \text{ Ar})_{\text{cam}} = 0.00125200 \pm 0.00002800$							Corr $\frac{36}{40}$ & $\frac{37}{40}$ ratios = 0.026727									
(39Ai	/ 40 Ar)s	am = 0	.0012520 .0999544	3 ± 0.0	0003803			Corr	30/40) & 39/4() ratios $=-0.050$	0727)160				
37Ca	/ 39K =	1.253 +	-0.038 F-	.2					38C1	/ 39K = [/]	2.458 ± 0.142	E-3				
, cu	γ_a / K	=	2 200 ⊥	-	F-2				сосг С	1/K	= 5162	 +0208F	_4			
F1 -	2 0 2 5 E	6	<i>2.299</i> ⊥	5.070	11 4				Б 2 –	Δ 520 E	3.102	- 0.270 L-	r			
1.1 = -	・0. <i>733</i> E-	U							1.7 =	-1 .ЈЭО Е-	J					

DP11-146 P57-010 muscovite

Fractions:

No	Name	1	Temp	Cum 3	39K			Age		40Ar* / 39K	
1	10-01 1.6W	8-F	1	0.00	248	50.612	\pm	61.833	Ma	$4.793 \hspace{0.2cm} \pm \hspace{0.2cm}$	5.94
2	10-02 2.5W	8-F	2	0.01	066	73.201	\pm	18.001	Ma	$6.976 \hspace{0.2cm} \pm \hspace{0.2cm}$	1.75
3	10-03 3.5W	8-F	3	0.09	824	88.951	±	1.648	Ma	8.514 \pm	0.16
4	10-04 4.5W	20kH	4	0.18	228	91.540	±	2.093	Ma	$8.768 \hspace{0.2cm} \pm \hspace{0.2cm}$	0.21
5	10-05 4.5W	20kH	5	0.20	817	89.618	±	6.363	Ma	$8.580 \ \pm$	0.62
6	10-06 4.5W	20kH	6	0.27	471	96.517	±	2.214	Ma	9.258 \pm	0.22
7	10-07 4.5W	20kh	7	0.48	658 1	01.499	±	0.734	Ma	9.749 \pm	0.07
8	10-08 5.0W	20kH	8	0.99	013 1	14.996	±	0.446	Ma	$11.088 \pm$	0.04
9	10-09 5.5W	20kH	9	1.00	000 1	55.251	±	23.227	Ma	$15.139 \hspace{0.2cm} \pm \hspace{0.2cm}$	2.36
No	Name		Cum 36	S	40A	r / 36Ar			40ArAcc	/g 37	Ca / 39K
1	10-01 1.6W	8-F	0.5296	5 3	31.82 ±		50.48	1	1.7E-0012	204.690 ± 199.06	53 m
2	10-02 2.5W	8-F	0.65533	10	$030.36 \pm$		640.52	2	4.1E-0013	$263.655 \pm$	76.753 m
3	10-03 3.5W	8-F	0.75619	122	$267.43 \pm$	9	267.22	2	3.3E-0013	$3.759\pm$	5.851 m
4	10-04 4.5W 20	kH	0.91994	75	$581.46 \pm$	4	321.57	1	5.3E-0013	$24.730 \pm$	7.283 m
5	10-05 4.5W 20	kH	0.91782	-1698	99.81 ± 70	69808.9	3	-	6.9E-0015	$17.191 \pm$	21.002 m
6	10-06 4.5W 20	kН	0.84808	-140	$05.83 \pm$	15	726.28	-	2.3E-0013	$21.484\pm$	8.162 m
7	10-07 4.5W 20	kh	0.90021	644	$150.38 \pm$	95′	731.53		1.7E-0013	$3.068\pm$	2.499 m
8	10-08 5.0W 20	kН	0.85365	-19387	77.61 ± 44	42563.71	1	-	1.5E-0013	$26.120\pm$	1.456 m
9	10-09 5.5W 20	kH	1.00000	19	$949.05 \pm$	1	690.37	7	4.8E-0013	$141.118\pm$	60.076 m
No	38C1/39K			40Ar*	* Vol ccN	TP/g			Atm Cont	F1 F2	
1	$30.409 \pm$	51.777	m	212.05 ±	262.65	E-15	(123.9%)	89.0552%	-0.000146	0.000287
2	$30.742 \pm$	14.529	m	1.02 \pm	0.25	E-12	Ì	(25.0%)	28.6792%	-0.000188	0.007514
3	$3.927 \pm$	1.206	m	$13.31 \pm$	0.26	E-12	(1.9%)	2.4088%	-0.000003	0.001472
4	$3.513 \pm$	1.353	m	$13.15 \pm$	0.31	E-12	(2.4%)	3.8977%	-0.000018	0.005691
5	$0.083 \pm$	3.513	m	$3.97 \ \pm$	0.29	E-12	(7.3%)	-0.1739%	-0.000012	0.105332
6	$3.631 \pm$	2.213	m	$11.00 \pm$	0.26	E-12	(2.4%)	-2.1098%	-0.000015	0.009375
7	$2.850 \pm$	0.820	m	$36.87 \ \pm$	0.32	E-12	(0.9%)	0.4585%	-0.000002	0.005607
8	$2.305 \pm$	0.578	m	$99.66 \ \pm$	0.61	E-12	(0.6%)	-0.1524%	-0.000019	0.146556
9	$9.134\pm$	13.887	m	2.67 \pm	0.41	E-12	((15.5%)	15.1612%	-0.000101	0.004188

Age	$= 105.933 \pm$	0.565 Ma			Wt. Mean Ag	$e = 109.18 \pm$	= 24.98 Ma(69.42)			
40Ar*	/ 39K =	$10.188 \pm$	0.060		Total 39K Vo	ol	= 1.7850E-0011 ccNTP/g	5		
					Total 40Ar* V	Vol =	$1.818 \pm 0.010 \ \text{E-10}$			
(40Ar /	/ 36Ar)sam = 16'	791.12±4578.44	ł		Total Atm 40	Ar Vol = 3.2	2576E-0012 ccNTP/g			
(36Ar	(40 Ar) sam = 0.0	00005956 ± 0.000	02276	Corr 36/4	0 & 39/40 rati	ios = -0.67510	09			
(37Ar	40Ar)sam = 0.0	00213501 ±0.000	016823	Corr 36/4	0 & 37/40 rati	ios =-0.04472	26			
(39Ar /	(40 Ar) sam = 0.0	09642834 ±0.000	48022	Corr 37/40 & 39/40 ratios =0.059183						
37Ca /	$39K = 2.214 \pm 0$	0.174 E-2			38Cl / 39K =	3.064 ± 0.46	57 E-3			
Ca / H	K = 4.06	$53 \pm 0.320 \text{ E-}2$			Cl / K	= 6.435 ±	0.981 E-4			
F1 = -1	.579 E-5				F2 = 9.902 E	-3				

DP11-161 P57-028 K-feldspar

Fractions:

No	Name	T	emp	Cum 39K	-	Ag	ge		40Ar*	/	39K
1	28-01 1.5W 22	-J	1	0.08805		490.503	± 117.641	Ma	52.633	± 1-	4.42
2	28-02 3.5W 22	-J	2	0.53753	22	$28.756 \pm$	10.787	Ma	22.774	±	1.14
3	28-03 4.5W 20	kH	3	0.70381	28	$85.289 \pm$	27.435	Ma	28.861	±	3.00
4	28-04 4.5W 20	kH	4	0.89495	26	$62.119 \pm$	28.972	Ma	26.343	±	3.13
5	28-05 4.5W 20	kН	5	0.92953		218.426	± 159.427	Ma	21.682	± 1	6.80
6	28-06 5.0W 20	kН	6	1.00000	27	$74.267 \pm$	77.063	Ma	27.660	±	8.38
No	Name Cum 3	36S 40)Ar/36	Ar				40ArAc	c/g 37Ca / 3	9K	
1	28-01 1.5W 22-J	0.	65189	71	$9.98 \pm$	280.	41 2	2.3E-0012	241.4	408 ± 464.12	27 m
2	28-02 3.5W 22-J	0.	85071	336	$9.85 \pm$	1718.	28 (5.9E-0013	-13.9	26 ±	33.867 m
3	28-03 4.5W 20kH	0.	81898	-8737	7.12 ±	27207.:	50 -1	.1E-0013	32.4	488 ±	94.883 m
4	28-04 4.5W 20kH	0.	85586	844	$8.52 \pm$	27060.	68 1	.3E-0013	80.3	325 ±	83.850 m
5	28-05 4.5W 20kH	1.	01087	58	4.31 ±	437.	08 5	5.4E-0013	573.1	80 ± 471.72	29 m
6	28-06 5.0W 20kH	1.	00000	-10409	$.79 \pm 113$	3094.75	-3	.8E-0014	31.7	759 ± 220.2	14 m
No	38C1	/ 39K				40Ar* V	ol ccNTP/g	At	m Cont	Fl	F2
1	$87.567 \pm$	48.158	m	$3.24\pm$	0.88 E-	-12 (27.1%	b)	41	.0426%	-0.000172	0.000372
2	$16.428 \pm$	6.640	m	7.16 \pm	0.35	E-12 (4.9%)	8	.7689%	0.000010	0.000516
3	$37.478 \pm$	22.231	m	3.36 \pm	0.34	E-12 (1	0.2%)	-3	.3821%	-0.000023	0.002872
4	$26.178 \pm$	21.196	m	3.52 \pm	0.41	E-12 (1	1.6%)	3	.4977%	-0.000057	0.006841
5	$110.591 \pm$	121.358	m	524.74 \pm	401.70	E-15 (7	6.6%)	50	.5723%	-0.000409	0.001721
6	$54.439 \pm$	70.898	m	1.36 \pm	0.41	E-12 (3	0.0%)	-2	.8387%	-0.000023	0.003469

Age = $271.914 \pm$	16.370 Ma	Wt. Mean Age = 240.50 ± 15.92 Ma (1.70)
40Ar* / 39K =	27.404 ± 1.778	Total 39K Vol = $6.9987E-0013 ccNTP/g$
		Total $40 \text{Ar}^* \text{Vol} = 1.918 \pm 0.123 \text{ E-11}$
(40Ar / 36Ar)sam =	1931.84 ± 685.30	Total Atm 40Ar Vol = 3.4635 E-0012 ccNTP/g
(36Ar / 40Ar)sam = 0	$0.00051764 \pm 0.00024065$	Corr 36/40 & 39/40 ratios =-0.635871
(37 Ar / 40 Ar) sam = 0	$0.00178685 \pm 0.00166933$	Corr 36/40 & 37/40 ratios =-0.039464
(39 Ar / 40 Ar) sam = 0	0.03090930 ±0.00170442	Corr 37/40 & 39/40 ratios =0.056518
37Ca / 39K = 5.781	±5.392 E-2	$38C1/39K = 3.399 \pm 0.996$ E-2
Ca / K = 1	$.061 \pm 0.989 \text{ E-1}$	$Cl / K = 7.138 \pm 2.092 \text{ E-3}$
F1 = -4.124 E-5		F2 = 9.224 E-4

DP11-161 P57-025 muscovite

Fracti	ons:	Iamaa		Тал	cura Cura	- 20V				1		40 4*	/ 2012	
NO 1	N 25_01	vame	W 21_I	1 en	np Cur	n 39K 00060	30	0 201	+	Age	Ma	40Ar*	/ 39K	07
1 2	25-01	2.5	W 21-J	1	0.	00909	59	9.291	т _	14 652	Ma	41.755	\pm 1. \pm 1	97 07
2	25-02	5.5 4.55	W 201-J	2	0.	02003	19	4.492	т 	5 626	Ivia Mo	19.625	\pm 1. \pm 0	50
5	25-05	4.5		3	0.	00900	10	5 160	т 	14 052	Ivia Mo	10.055	\pm 0. \pm 1	50
4	25-04	4.31		4	0.	10129	12	3.100	±	14.935	Ivia Ma	6 799	± 1.	50 70
5	25-05	4.4		5	0.	10138	י ר	1.2/2	±	0 252	Ivia Ma	0.788	\pm 1.	/0 02
0	25-00	4.5	V 20KH	0	0.	09007	/	8.1//	±	0.255	Ma	7.400	\pm 0.	02
/	25-07	4.51	V 20KH	/	0.	/1820	8	0.903	±	7.012	Ma	7.726	± 0.	68 75
8	25-08	C 4	.5 W 20	8	0.	/4051	8	5.239	±	7.627	Ma	8.150	± 0.	75
9	25-09	4.5	V 20KH	9	0.	81831	10	5 510	±	2.404	Ma	10.3/1	± 0.	24 50
10	25-10	6.01	V 20KH	10	0.	85551	14	5.510	±	5.161	Ma	14.150	± 0.	52
11	25-11	5.01	V 20kH	11	0.	95150	18	5.434	±	1.990	Ma	18.237	\pm 0.	21
12	25-12	6.01	V 20kH	12	1.	00000	24	3.402	±	4.120	Ma	24.333	\pm 0.	44
No	Nar	me		Cum 36	6S	4	0Ar/	36Ar			40	ArAcc/g		37Ca / 39K
1	25-01 1.	.6W 2	21-J	0.250	71	580.4	43 ±		26.34		7.6E-0012	-1	4.930 ±	31.813 m
2	25-02 3.	.5W 2	21-J	0.413	62	1600.9	97±	1	53.17		4.9E-0012		$7.506 \pm$	49.195 m
3	25-03 4.	5W 2	20kH	0.698	11	799.4	51 ±		41.91		8.6E-0012	15	$50.902 \pm$	18.592 m
4	25-04 4	5W 2	20kH	0.746	88	934	25 +	2	48 58		1 5E-0012	10	77572 +	34 727 m
5	25-05 4	4W 2	20kH	0.808	04	632 9		1	80.63		1.8E-0012	11	6.833 +	41 727 m
6	25 05 4.	5W 2	20kH	0.000	32	7669) <u>+</u>	5	68 99		3.2E-0012	7	10.055 ±	0.990 m
7	25.07 4	5W 2	20КП 20ЪН	0.019	22 28	2355	52 ±	14	A5 0A		J.ZE 0012	, 23	3 516 ±	33.416 m
, 0	25-07 $+$.	5W 20	JUNIT	0.920	70	6090 3	22 +	1/1	96.26		1 /E 0012	25	$3.310 \pm$	25 020 m
0	25-00 (4	3 W 20 W 2011	T	0.955	/0 27	0909.	$10 \pm$	141	471.20		1.4E-0015	15	$2.0/1 \pm$	23.029 III
9	25-09 4.5	W 20K		0.9948	87	2628.	$10 \pm$	1.6	4/1.39		1.8E-0012	19	93.34/±	/.53/m
10	25-10 6.0	W 20k	H	1.0030	15	11666.	86 ±	164	124.66		2.5E-0013	1	/5.506 ±	15.553 m
11	25-11 5.0	W 20k	Н	1.0062	28	96117.	$33 \pm$	3083	390.37		9.7E-0014	10	$09.367 \pm$	9.555m
12	25-12 6.0	W 20k	H	1.0000	00	-32925.	21 ±	642	200.27		-1.9E-0013		72.091 ±	13.472m
No	38C1/39	Ж			40 <i>A</i>	Ar* Vol c	cNTI	P/g			Atm Cont	F1 F2		
1	33.36	2 ±	7.612	m	7.29	\pm 0.	35	E-12	(4.7%)	50.9103%		0.000011	0.000018
2	-0.98	$0 \pm$	7.708	m	21.69	± 0	48	E-12	(2.2%	18.4575%		-0.000005	0.000032
3	6.95	$0 \pm$	3.663	m	14.62	± 0	.46	E-12	Ì	3.1%	36.9600%		-0.000108	0.001032
4	6.36	6 ±	8.998	m	3.18	± 0.	39	E-12	(12.3%	31.6296%		-0.000077	0.001507
5	20.74	0 ±	8.111	m	2.11	± 0.	53	E-12	Ì	25.0%	46.6834%		-0.000083	0.001537
6	2.28	4 ±	0.424	m	79.93	± 0.	47	E-12	Ć	0.6%	3.8531%		-0.000057	0.021416
7	19.10	8 ±	6.436	m	3.08	± 0.	27	E-12	(8.9%	12.5450%		-0.000167	0.016935
8	8.62	2 ±	6.741	m	3.27	± 0.	30	E-12	Ć	9.1%	4.2279%		-0.000138	0.042251
9	4 01	 1 +	2.184	m	14 53	+ 0	34	E-12	$\tilde{(}$	2.3%	11 2439%		-0.000138	0.011869
10	0.46	1 – 4 +	3 778	m	9.48	+ 0	35	E-12	(3 7%	2 5328%		-0.0000150	0.016618
11	-0.84	8 +	1 905	m	31.54	+ 0	35	E-12	(1.1%	0 3074%		-0.000078	0.138282
12	2.90	$6 \pm$	5.469	m	21.26	± 0	.39	E-12	(1.8%)	-0.8975%		-0.000051	0.028331
Integr	oted Decult													
integr	aleu Kesult	15.												
Age	= 121.808	$8 \pm$	0.769 Ma	W	/t. Mean /	Age =			81.07	± 14	0.08 Ma (:	563.3)		
40Ar*	* / 39K =		$11.767 \pm$	0.	.077				Total	39K Vo	=	= 1.801	5E-0011 cc	NTP/g
									Total	40Ar* V	vol =	2.120 ±	0.014 E-10	
(40Ar	/ 36Ar)san	n =	237	3.91±	101.1	14			Total	Atm 40	Ar Vol = 3.012	38E-0011	l ccNTP/g	
(36Ar	·/40Ar)san	n = 0.0	00042125 =	±0.00002	2385				Corr	36/40 &	39/40 ratios =	=-0.6418	85	
(37Ar	/ 40Ar)san	n = 0.0	0734379 =	±0.00017	7582				Corr	36/40 &	37/40 ratios =	=-0.14764	41	
(39Ar	· / 40Ar)san	n = 0.0)7440552 =	±0.00040)431				Corr	37/40 &	39/40 ratios =	=0.21801	5	
	,													
37Ca	/ 39K = 9.3	870 ± 0	0.231 E-2						38Cl /	/ 39K =	3.422 ± 0.585	E-3		
Ca /	K =	1.8	11 ± 0.042	E-1					Cl / K	. =	$= 7.187 \pm 1.00$.229 E-4		
F1 = -	7.040 E-5								F2 = 4	4.777 E-	3			
DP11-173 P57-023 whole rock

No	Name		Temp	Cum 39K	Age			40Ar*	/	39K
1	23-01 1.5W	31-D	1	0.00150	$3.166 \ \pm$	0.204	Ga	805.756	±	110.10
2	23-02 1.7W	31-D	2	0.00303	$2.991 \ \pm$	0.058	Ga	715.437	±	28.45
3	23-03 2.0W	31-D	3	0.00939	$362.458 \ \pm$	42.662	Ma	37.485	±	4.87
4	23-04 2.3W	2-J	4	0.01267	$367.656 \ \pm$	17.995	Ma	38.079	±	2.06
5	23-05 2.5W	3-J	5	0.01492	$478.928 \ \pm$	51.361	Ma	51.219	±	6.25
6	23-06 3.0W	5-J	6	0.02400	$474.340 \ \pm$	19.378	Ma	50.661	\pm	2.35
7	23-07 3.5W	5-J	7	0.08367	$154.634 \hspace{0.2cm} \pm \hspace{0.2cm}$	2.771	Ma	15.076	±	0.28
8	23-08 4.5W	20kH	8	0.35119	$130.876\ \pm$	1.982	Ma	12.675	±	0.20
9	23-09 4.5W	20kH	9	0.45638	$127.265 \ \pm$	3.105	Ma	12.313	\pm	0.31
10	23-10 4.5W	20kH	10	0.58277	$101.778\ \pm$	1.664	Ma	9.777	\pm	0.16
11	23-11 4.5W	20kH	11	0.60800	$97.164 \ \pm$	3.974	Ma	9.322	\pm	0.39
12	23-12 4.5W	20kH	12	0.65602	$86.793 \ \pm$	1.089	Ma	8.303	\pm	0.11
13	23-13 4.5W	20kH	13	0.72394	$84.839 \ \pm$	1.394	Ma	8.111	\pm	0.14
14	23-14 4.5W	20kH	14	0.79198	$84.636 \ \pm$	1.333	Ma	8.091	\pm	0.13
15	23-15 5.0W	20kH	15	0.93898	$85.221 \ \pm$	0.640	Ma	8.149	\pm	0.06
16	23-16 6.0W	20kH	16	0.99803	$85.317 \ \pm$	2.489	Ma	8.158	\pm	0.24
17	23-17 6.0W	20kH	17	1.00000	$46.920\ \pm$	93.480	Ma	4.439	±	8.96

No	Name	Cum 36S	40Ar / 36Ar		40ArAcc/g	37Ca	/ 39K 1
	23-01 1.5W 31-D	0.00373	167511.78 ± 56940	05.98	9.8E-0014	$3.065 \pm$	1.337
2	23-02 1.7W 31-D	0.05282	$11835.36 \pm$	10507.67	1.3E-0012	$11.336\pm$	0.491
3	23-03 2.0W 31-D	0.21587	$1053.04\pm$	346.74	4.3E-0012	$66.612 \pm$	1.881
4	23-04 2.3W 2-J	0.23469	$3724.33 \pm$	2006.86	5.0E-0013	$122.752 \pm$	2.786
5	23-05 2.5W 3-J	0.24685	$5209.38 \pm$	10194.91	3.2E-0013	$208.651 \pm$	14.786
6	23-06 3.0W 5-J	0.26884	$11118.85\pm$	18664.87	5.8E-0013	$211.401 \pm$	2.895
7	23-07 3.5W 5-J	0.40312	$3763.20\pm$	768.78	3.5E-0012	$49.841 \pm$	0.665
8	23-08 4.5W 20kH	0.80755	$4634.85 \pm$	665.69	1.1E-0011	$56.997 \pm$	0.351
9	23-09 4.5W 20kH	0.77830	$\textbf{-22621.62} \pm$	24153.41	-7.7E-0013	$33.300 \pm$	1.832
10	23-10 4.5W 20kH	0.77735	-669395.04 ±20894	4228.33	-2.5E-0014	$8.002\pm$	1.098
11	23-11 4.5W 20kH	0.77064	$\textbf{-17865.00} \pm$	45740.15	-1.8E-0013	$14.640 \pm$	0.419
12	23-12 4.5W 20kH	0.77097	$628639.93 \pm \! 1591$	9747.78	8.6E-0015	$2.365\pm$	0.085
13	23-13 4.5W 20kH	0.82774	$5318.43 \ \pm$	1483.13	1.5E-0012	$635.204 \pm $	7.683 m
14	23-14 4.5W 20kH	0.88413	$5348.28 \ \pm$	1443.89	1.5E-0012	$634.992 \pm $	5.549 m
15	23-15 5.0W 20kH	0.96321	$8136.35 \ \pm$	1455.91	2.1E-0012	152.785 \pm	2.110 m
16	23-16 6.0W 20kH	0.98376	$12423.19 \ \pm$	14951.32	5.4E-0013	$678.811 \pm $	14.814 m
17	23-17 6.0W 20kH	1.00000	574.83 \pm	1096.36	4.3E-0013	$1.817 \pm$	0.315

DP11-173 P57-023 whole rock

No	38C	1/39	K	40Ar*	Vol ccNT	TP/g			Atm Cont	F1	F2
1	-59.917	±	31.252 m	$55.62 \pm$	0.67	E-12	(1.2%)	0.1764%	-0.002186	0.149044
2	169.514	±	43.391 m	50.49 \pm	1.21	E-12	(2.4%)	2.4968%	-0.008087	0.040914
3	2.765	±	14.210 m	11.01 ±	1.42	E-12	(12.9%)	28.0615%	-0.047516	0.238797
4	38.462	±	19.787 m	5.75 \pm	0.29	E-12	(5.1%)	7.9343%	-0.087561	0.733984
5	9.449	±	23.606 m	5.33 \pm	0.64	E-12	(12.0%)	5.6725%	-0.148834	0.825751
6	9.138	±	3.888 m	21.21 \pm	0.99	E-12	(4.6%)	2.6576%	-0.150796	0.915502
7	2.887	±	0.807 m	$41.50 \ \pm$	0.78	E-12	(1.9%)	7.8524%	-0.035553	0.753623
8	4.459	±	0.489 m	$156.41 \hspace{0.2cm} \pm \hspace{0.2cm}$	2.45	E-12	(1.6%)	6.3756%	-0.040657	0.838710
9	0.722	±	1.085 m	59.74 \pm	1.54	E-12	(2.6%)	-1.3063%	-0.023754	1.062740
10	1.495	±	0.560 m	$57.00 \pm$	0.90	E-12	(1.6%)	-0.0441%	-0.005708	1.006610
11	2.132	±	1.960 m	$10.85 \ \pm$	0.46	E-12	(4.2%)	-1.6541%	-0.010443	1.144983
12	0.205	±	1.987 m	$18.39 \ \pm$	0.24	E-12	(1.3%)	0.0470%	-0.001687	0.980366
13	2.970	±	1.046 m	25.41 \pm	0.44	E-12	(1.7%)	5.5561%	-0.000453	0.098614
14	2.853	±	0.904 m	$25.39 \ \pm$	0.42	E-12	(1.7%)	5.5251%	-0.000453	0.099334
15	1.948	±	0.588 m	55.25 \pm	0.48	E-12	(0.9%)	3.6318%	-0.000109	0.039351
16	-0.416	±	1.341 m	22.22 ±	0.67	E-12	(3.0%)	2.3786%	-0.000484	0.219562
17	26.920	±	21.084 m	$404.24 \hspace{0.2cm} \pm \hspace{0.2cm}$	815.82	E-15	(2	201.8%)	51.4067%	-0.001296	0.029705

Age = $138.913 \pm$	0.932 Ma	Wt. Mean Age =	91.34 ± 66.92 Ma	a (156.1)
40Ar* / 39K =	$13.484\pm$	0.093	Total 39K Vol	= 4.6127E-0011 ccNTP/g
			Total 40Ar* Vol =	$6.220 \pm 0.041 \text{ E-10}$
(40Ar / 36Ar)sam =	7274.2	9 ± 907.80	Total Atm 40Ar Vol =	2.6336E-0011 ccNTP/g
(36 Ar / 40 Ar) sam = 0	.00013747 ±0.0	00002331	Corr 36/40 & 39/40 rat	ios =-0.515491
(37Ar / 40Ar)sam = 1	.89319864 ±0.0	2060073	Corr 36/40 & 37/40 rat	ios =-0.470794
(39Ar / 40Ar)sam = 0	.07115018 ±0.0	00044032	Corr 37/40 & 39/40 rat	ios =0.493401
37Ca / 39K = 2	$2.661 \pm 0.025 \text{ E}$	1	38C1/39K = 2.1	822 ± 0.309 E-3
Ca / K =	4.882 ± 0.046	E 1	Cl/K = 5	$.926 \pm 0.649 \text{ E-4}$
F1 = -1.898 E-2			F2 = 7.898 E-1	

DP12-70 P59-017muscovite

						Fractions:						
	No	Na	me	Tem	р	Cum 39K		Age			40Ar* / 39K	
1	17-01	1.5W	19-0	1		0.02639	78.746	, ±	1.730	Ma	$8.682 \ \pm \ 0.19$	
2	17-02	1.6W	19-0	2		0.05664	77.170) ±	2.318	Ma	$8.505 \ \pm \ 0.26$	
3	17-03	1.7W	19-0	3		0.17792	78.658	5 ±	0.583	Ma	$8.672 \ \pm \ 0.07$	
4	17-04	1.8W 2	26-0	4		0.26879	91.241	±	1.090	Ma	10.095 ± 0.12	
5	17-05	1.9W 2	26-0	5		0.41644	92.774	÷ ±	0.617	Ma	$10.269 \ \pm \ 0.07$	
6	17-06	2.0W 2	26-0	6		0.46909	91.848	±	1.290	Ma	10.164 ± 0.15	
7	17-07	2.1W 2	26-0	7		0.55599	91.173	±	0.940	Ma	10.087 ± 0.11	
8	17-08	2.3W 2	26-0	8		0.60224	92.292	±	1.824	Ma	10.214 ± 0.21	
9	17-09	2.5W 2	26-0	9		0 75567	96 268	+	0.598	Ma	10.666 + 0.07	
10	17-10	3.5W 2	26-0	10		0.80219	97 427	/	1 391	Ma	10.000 ± 0.07 10.798 ± 0.16	
11	17_11	4 5W	20 U 2012H	11		0.83087	95 654	- +	2 605	Ma	10.796 ± 0.10 10.596 ± 0.30	
12	17-11	т.5 W 2	2011	11		1 00000	00 510		0.430	Ma	10.390 ± 0.30	
12	1/-12	Tuse 2	20-0	12		1.00000	99.310) I	0.430	Ivia	11.033 ± 0.03	
No		Name		Cum 36S		40Ar	/ 36Ar			40ArAcc/g	37Ca/	39K
1	17-0	1 1.5W	19 - 0	0.43970		913.07	±	41.20	4	4.7E-0012	$8.137 \pm$	9.475 m
2	17-02	1.6W	19 - 0	0.41901		-14447.92	± 218	309.69		-2.2E-0013	$-1.074 \pm$	11.103 m
3	17-03	1.7W	19-0	0.56464		8856.34	± 18	383.28		1.5E-0012	$1.653 \pm$	2.555 m
4	17-04	1.8W	26-O	0.66793		10821.88	± 46	527.34		1.1E-0012	$4.684 \pm$	4.226 m
5	17-05	1.9W	26-0	0.83574		11006.02	± 24	179.02		1.8E-0012	$3.038 \pm$	2.188 m
6	17-06	2.0W	26-0	0.86689		20660 15	+ 192	84 52		3 3E-0013	11 211 +	7.603 m
7	17-07	2.0 W	26 0 26-0	0.94248		14040 44	+ 66	586.45		8 0E-0013	6 5 2 3 +	4 485 m
8	17-08	2.1 W	26-0	0.94240		29637.03	+ 590	47 74		2.0E_0013	-4.912 +	6.165 m
0	17-08	2.5 W	20-0	0.90130		29037.03	± 1540	42.76		2.0E-0013	-4.912 ±	1.724 m
9	17-09	2.5 W	20-0	0.96409	5	00403.03 160520.29	± 1340	42.20		2.4E-0015	$1.770 \pm 2.101 \pm$	1./54 III 8.270 m
10	17-10	5.5 W	20-0	0.98598	-34	42007.20	±14309	94102		-1.2E-0013	$3.101 \pm$	8.270 III
11	1/-11	4.5 W	20KH	0.99224	,	43907.32	$\pm 1/938$	0.53		8./E-0014	$21.844 \pm$	/.5/9 m
12	1/-12	ruse	26-0	1.00000	-	285466.61	± 92180	02.76		8.2E-0014	38.311 ±	1.1/6 m
No		38C1	/ 39K		4	40Ar* Vol	ccl	NTP/o		Atm Co	ont F1	F2
1	8	625 +	3 010	m	9 72	+ 0.2	2 E-12	(2 2%)	32 3634	-0 00006	0.000156
2	-1	054 +	7 989	m	10.92	+ 0.2	4 E-12		3.1%)	-2 0453	3% 0.000001	0.000521
3	462	022 +	953 431		44.63	+ 0.4	0 E-12		0.9%)	3 3366	5% -0.000001	0.000455
4	0	005 +	2 959	μ m	38.92	+ 0.5	$E_{12} = E_{12}$		1.3%)	2 7306	5% _0.000001	0.001359
5	0.	-00J -	2.757	111	50.72	± V		~ (1.570)	2.7500		0.001557
5	0	212 +	1 709	m	64 33	+ 0.5		ì	0.8%)	2 6840	.0.00002	0.000882
6	0. 6	212 ±	1.709 4 378	m	64.33	± 0.5	52 E-12		0.8%) 1.4%)	2.6849	0% -0.000002 8% -0.000008	0.000882
6 7	0. 6. 1	$212 \pm 724 \pm 404 \pm 100$	1.709 4.378 1.471	m m	64.33 22.71	± 0.5 ± 0.3 ± 0.4	52 E-12 53 E-12 13 E-12		0.8%) 1.4%)	2.6849 1.4303 2.1046	0% -0.000002 3% -0.000008 6% 0.000005	0.000882 0.006229
6 7 8	0. 6. 1.	$212 \pm 724 \pm 404 \pm 642 + 1000$	1.709 4.378 1.471	m m m	64.33 22.71 37.19	$ \pm 0.5 \pm 0.3 \pm 0.4 $	52 E-12 53 E-12 53 E-12 53 E-12		0.8%) 1.4%) 1.1%) 2.1%)	2.6849 1.4303 2.1046	-0.000002 3% -0.000008 5% -0.000005 0 0.000004	0.000882 0.006229 0.002472
6 7 8	0. 6. 1. 0.	$212 \pm 724 \pm 404 \pm 643 \pm 118 +$	1.709 4.378 1.471 1.432	m m m m	64.33 22.71 37.19 20.05	$\begin{array}{cccc} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.4 \end{array}$	52 E-12 53 E-12 53 E-12 54 E-12 55 E-12		0.8%) 1.4%) 1.1%) 2.1%)	2.6849 1.4303 2.1046 0.9971	-0.000002 -0.000002 -0.000008 -0.000005 -0.000004 0.000004	0.000882 0.006229 0.002472 0.003954
6 7 8 9	0. 6. 1. 0. 1.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 2006 \pm 1000$	1.709 4.378 1.471 1.432 0.590	m m m m	64.33 22.71 37.19 20.05 69.44	$\begin{array}{cccc} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.5 \\ \end{array}$	52 E-12 53 E-12 53 E-12 54 E-12 55 E-12 55 E-12		0.8%) 1.4%) 1.1%) 2.1%) 0.8%)	2.6849 1.4303 2.1046 0.9971 0.3420	-0.000002 -0.000002 -0.000008 -0.000005 -0.000004 -0.000001	0.000882 0.006229 0.002472 0.003954 0.003989
6 7 8 9 10	0. 6. 1. 0. 1. 2.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 + 1000$	1.709 4.378 1.471 1.432 0.590 2.803	m m m m m	64.33 22.71 37.19 20.05 69.44 21.31	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 ¹² E-12 ¹³ E-12 ¹³ E-12 ¹⁴ E-12 ¹⁵ E-12 ¹⁵ E-12 ¹⁶ E-12 		0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%)	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054	-0.000002 -0.000002 -0.000008 -0.000005 0.000004 0% -0.000001 0% -0.000002	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774
6 7 8 9 10 11	0. 6. 1. 0. 1. 2. 1.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 700 \pm 1000$	1.709 4.378 1.471 1.432 0.590 2.803 1.521	m m m m m	64.33 22.71 37.19 20.05 69.44 21.31 12.90	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 ¹² E-12 ¹³ E-12 ¹³ E-12 ¹⁴ E-12 ¹⁵ E-12 ¹⁵ E-12 ¹⁶ E-12 ¹⁶ E-12 		0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%()	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730	-0.000002 -0.000002 -0.000008 -0.000005 -0.000001 -0.000001 -0.000002 -0.000001 -0.000002 -0.000002 -0.000002 -0.000002 -0.000016	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489
6 7 8 9 10 11 12	0. 6. 1. 0. 1. 2. 1. 1.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm 1000$	1.709 4.378 1.471 1.432 0.590 2.803 1.521 0.560	m m m m m m	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 2 E-12 3 E-12 3 E-12 4 E-12 5 E-12 2 E-12 4 E-12 4 E-12 4 E-12 	2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%)	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035	0% -0.000002 3% -0.000008 5% -0.000005 1% 0.000004 0% -0.000001 4% -0.000002 0% -0.000002 5% -0.000002 5% -0.000027	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12	0. 6. 1. 0. 1. 2. 1. 1.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm 0000000000000000000000000000000$	1.709 4.378 1.471 1.432 0.590 2.803 1.521 0.560	m m m m m m	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 2 E-12 3 E-12 3 E-12 4 E-12 5 E-12 5 E-12 6 E-12 8 E-12 	2 (2 (2 (2 (2 (2 (2 (2 (2 (0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%)	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035	-0.000002 -0.000002 -0.000008 -0.000005 -0.000001 -0.000001 -0.000002 -0.000002 -0.000002 -0.000002 -0.000002 -0.000002 -0.000027	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12 Integ	0. 6. 1. 0. 1. 2. 1. 1. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm$ sults: 858 ± 752	1.709 4.378 1.471 1.432 0.590 2.803 1.521 0.560	m m m m m m	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19	$\begin{array}{c} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.3 \\ \pm & 0.4 \end{array}$	 2 E-12 3 E-12 3 E-12 4 E-12 5 E-12 2 E-12 6 E-12 8 E-12 92 509 	2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%)	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035	-0.000002 3% -0.000008 5% -0.000005 .% 0.000004 .% -0.000001 .% -0.000002 .% -0.000002 .% -0.000002 .% -0.000002 .% -0.000027	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12 Integ Age	0. 6. 1. 0. 1. 2. 1. 1. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm$ sults: .858 ±	1.709 4.378 1.471 1.432 0.590 2.803 1.521 0.560 0.483 Ma	m m m m m m	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19 Mean	$\begin{array}{rcrcr} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.3 \\ \pm & 0.4 \end{array}$	 2 E-12 3 E-12 3 E-12 4 E-12 5 E-12 5 E-12 6 E-12 8 E-12 92.509 	2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%)	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035 a (90.74)	-0.000002 3% -0.000008 5% -0.000005 1% 0.000001 1% -0.000002 0% -0.000001 5% -0.000002 5% -0.000002 5% -0.000027	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12 Integ Age	0. 6. 1. 0. 1. 2. 1. 1. 5. rated Re = 91. * / 39K =	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm$ sults: .858 ±	$\begin{array}{c} 1.709 \\ 4.378 \\ 1.471 \\ 1.432 \\ 0.590 \\ 2.803 \\ 1.521 \\ 0.560 \end{array}$ 0.483 Ma $10.165 \pm$	m m m m m m wt. 0.03	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19 Mean	$\begin{array}{rcrcr} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.3 \\ \pm & 0.4 \end{array}$	 2 E-12 3 E-12 3 E-12 4 E-12 5 E-12 2 E-12 2 E-12 4 E-12 8 E-12 92.509 	 4 (4 (0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%) .490 Mi 39K Vol	$\begin{array}{rcr} 2.6849 \\ 1.4303 \\ 2.1046 \\ 0.9971 \\ 0.3420 \\ -0.0054 \\ 0.6730 \\ 0.1035 \end{array}$ a (90.74) $\begin{array}{r} = \end{array}$	0% -0.000002 3% -0.000008 5% -0.000005 1% 0.000001 1% -0.000002 0% -0.000002 0% -0.000002 0% -0.000002 0% -0.000002 0% -0.000002 0% -0.000016 5% -0.000027 4.2429E-0011 cc	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12 Integ Age 40Ar ³	0. 6. 1. 0. 1. 2. 1. 1. 1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm$ sults: .858 ±	$\begin{array}{c} 1.709 \\ 4.378 \\ 1.471 \\ 1.432 \\ 0.590 \\ 2.803 \\ 1.521 \\ 0.560 \end{array}$ 0.483 Ma 10.165 \pm	m m m m m m Wt. 0.03	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19 Mean	$\begin{array}{rcrcr} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.3 \\ \pm & 0.4 \\ \end{array}$	 2 E-12 3 E-12 3 E-12 3 E-12 4 E-12 5 E-12 2 E-12 6 E-12 8 E-12 92.509 	2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%) .490 Mi 39K Vol 40Ar* V	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035 $a (90.74)$ $l = 4$ $Vol = 4$	$\begin{array}{rrrr} -0.000002 \\ -0.000002 \\ -0.000008 \\ -0.000005 \\ 0.000004 \\ 0.0000001 \\ 0.000001 \\ 0.0000016 \\ -0.000016 \\ 0.0000027 \\ \end{array}$	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12 Integ Age 40Ar ³	0. 6. 1. 0. 1. 2. 1. 1. 1. 5 rated Re = 91. * / 39K =	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm$ sults: .858 ±	$\begin{array}{c} 1.709\\ 4.378\\ 1.471\\ 1.432\\ 0.590\\ 2.803\\ 1.521\\ 0.560\\ \end{array}$ $0.483 \text{ Ma}\\ 10.165 \pm \end{array}$	m m m m m m Wt. 0.03	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19 Mean	$\begin{array}{rcrcr} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.3 \\ \pm & 0.4 \end{array}$	 2 E-12 3 E-12 3 E-12 4 E-12 5 E-12 5 E-12 6 E-12 8 E-12 92.509 	 2 (2 (2 (2 (2 (2 (4 (2 (4 (0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%) 490 Mi 39K Vol 40Ar* V	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035 $a (90.74)$ $l = 4$ $Vol = 4$	$\begin{array}{r} -0.000002 \\ -0.000002 \\ -0.000008 \\ -0.000005 \\ 0.000004 \\ 0.000001 \\ -0.000001 \\ 0.000002 \\ 0.0000016 \\ -0.000027 \\ \end{array}$ $\begin{array}{r} 4.2429E-0011 \ cc \\ 4.313 \pm 0.014 \ E-10 \\ 0.000014 \ E-10 \\ 0.000014 \ E-10 \\ 0.000014 \ E-10 \\ 0.000014 \ E-10 \\ 0.0000014 \ E-10 \\ 0.000000000000000000000000000000000$	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12 Integ Age 40Ar ³ (40Ar	0. 6. 1. 0. 1. 2. 1. 1. 2. 1. 1. rated Re = 91. * / 39K = r / 36Ar)s	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm $ sults: .858 \pm	$\begin{array}{c} 1.709\\ 4.378\\ 1.471\\ 1.432\\ 0.590\\ 2.803\\ 1.521\\ 0.560\\ \end{array}$ $0.483 \ \mathrm{Ma}\\ 10.165 \pm\\ 344.33 \pm 1.668 = 0.000 \ \mathrm{Ma}\\ 10.165 \pm 0.0000 \ \mathrm{Ma}\\ 10.165 \pm 0.00000 \ \mathrm{Ma}\\ 10.165 \pm 0.0000 \ \mathrm{Ma}\\ 10.0000 \ \mathrm{Ma}\\ 10.00000 \ \mathrm{Ma}\\ 10.00000 \ \mathrm{Ma}\\ 10.0000000 \ \mathrm{Ma}\\ 10.000000000000 \ \mathrm{Ma}\\ 10.00000000000000000000000000000000000$	m m m m m m Wt. 0.02	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19 Mean	$\begin{array}{rcrcr} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.3 \\ \pm & 0.4 \\ \end{array}$	 2 E-12 3 E-12 3 E-12 4 E-12 5 E-12 2 E-12 6 E-12 8 E-12 92.509 	 2 (4 (2 (4 (4 (5 (4 (5 (4 (5 (4 (5 (0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%) .490 Mi 39K Vol 40Ar* V Atm 402	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035 a (90.74) $1 = 4$ Ar Vol = 1.057	$\begin{array}{r} -0.000002 \\ -0.000008 \\ -0.000008 \\ -0.000005 \\ 0\% \\ -0.000001 \\ 0\% \\ -0.000001 \\ 0\% \\ -0.000016 \\ 0\% \\ -0.000027 \\ \end{array}$ $\begin{array}{r} 4.2429E-0011 \ cc \\ 4.313 \pm 0.014 \ E-10 \\ 8E-0011 \ cc \ NTP/g \end{array}$	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12 Integ Age 40Ar ³ (40Ar	0. 6. 1. 0. 1. 2. 1. 1. 1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	$212 \pm$ $724 \pm$ $404 \pm$ $643 \pm$ $118 \pm$ $096 \pm$ $701 \pm$ $709 \pm$ sults: $.858 \pm$ am = 12 am = 0.0	$\begin{array}{c} 1.709\\ 4.378\\ 1.471\\ 1.432\\ 0.590\\ 2.803\\ 1.521\\ 0.560\\ \end{array}$ $\begin{array}{c} 0.483 \text{ Ma}\\ 10.165 \pm\\ 344.33 \pm 140\\ 00008101 \pm\\ \end{array}$	m m m m m m m Wt. 0.03 433.71 €0.000013	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19 Mean	$\begin{array}{rcrcr} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.3 \\ \pm & 0.4 \\ \end{array}$	 2 E-12 3 E-12 3 E-12 3 E-12 4 E-12 5 E-12 6 E-12 8 E-12 92.509 	 2 (2 (0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%) 490 Mi 39K Vol 40Ar* V Atm 40/ 36/40 &	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035 a (90.74) $1 = 4$ $Yol = 4$ Ar Vol = 1.057 $39/40 ratios = -4$	$\begin{array}{r} -0.000002 \\ -0.000002 \\ -0.000008 \\ -0.000005 \\ 0.000004 \\ 0.000001 \\ 0.000001 \\ 0.000001 \\ 0.000002 \\ -0.000016 \\ 0.0000027 \\ \end{array}$ $\begin{array}{r} 4.2429E-0011 \ cc \\ 4.313 \pm 0.014 \ E-10 \\ 8E-0011 \ cc \\ NTP/g \\ -0.663766 \end{array}$	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12 Integ Age 40Ar ³ (40Ar (36Ar (37Ar	0. 6. 1. 0. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm 8015$ sults: .858 \pm am = 12 am = 0.0 am = 0.0	$\begin{array}{c} 1.709 \\ 4.378 \\ 1.471 \\ 1.432 \\ 0.590 \\ 2.803 \\ 1.521 \\ 0.560 \end{array}$ $\begin{array}{c} 0.483 \text{ Ma} \\ 10.165 \pm \\ 344.33 \pm 14 \\ 00008101 \pm \\ 00093232 \pm \end{array}$	m m m m m m w t. 0.00 433.71 =0.000013 =0.000106	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19 Mean 35	$\begin{array}{rcrcr} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.3 \\ \pm & 0.4 \end{array}$	 2 E-12 3 E-12 3 E-12 4 E-12 5 E-12 2 E-12 6 E-12 8 E-12 92.509 	2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%) 40Ar* V 40Ar* V Atm 404 36/40 & 36/40 &	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035 a (90.74) $1 = 4$ $Vol = 1.057$ $39/40 ratios = 37/40 ratios = 3$	$\begin{array}{r} -0.000002 \\ -0.000002 \\ -0.000008 \\ -0.000005 \\ 0.000001 \\ -0.000001 \\ 0.000001 \\ -0.000002 \\ -0.000016 \\ -0.000016 \\ -0.000027 \\ \end{array}$ $\begin{array}{r} 4.2429E-0011 \ cc \\ 4.313 \pm 0.014 \ E-10 \\ 8E-0011 \ cc \\ NTP/g \\ -0.663766 \\ -0.019301 \end{array}$	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12 Integ Age 40Ar ³ (40Ar (36Ar (37Ar (39Ar	0. 6. 1. 0. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 2. 1. 1. 2. 2. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm 858 \pm 858 \pm 120 = 120 $	$\begin{array}{c} 1.709 \\ 4.378 \\ 1.471 \\ 1.432 \\ 0.590 \\ 2.803 \\ 1.521 \\ 0.560 \end{array}$ $\begin{array}{c} 0.483 \text{ Ma} \\ 10.165 \pm \\ 344.33 \pm 14 \\ 00008101 \pm \\ 00093232 \pm \\ 009602087 \pm \\ \end{array}$	m m m m m m m w t. 0.02 433.71 =0.000013 =0.000106	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19 Mean 35	$\begin{array}{rcrcr} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.3 \\ \pm & 0.4 \\ \end{array}$	 2 E-12 3 E-12 3 E-12 3 E-12 4 E-12 5 E-12 6 E-12 8 E-12 92.509 	$\begin{array}{c} \pm & (\\ \pm $	0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%) .490 Mi 39K Vol 40Ar* V Atm 40/ 36/40 & 36/40 & 36/40 &	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035 a (90.74) $1 = 4$ $7ol = 4$ Ar Vol = 1.057 $39/40 ratios = 4$ $37/40 ratios = 4$ $39/40 ratios = 4$	$\begin{array}{r} -0.000002 \\ -0.000002 \\ 8\% & -0.000008 \\ 5\% & -0.000005 \\ 9\% & 0.000001 \\ 9\% & -0.000001 \\ 9\% & -0.000002 \\ 9\% & -0.000016 \\ 5\% & -0.000027 \\ \end{array}$ $\begin{array}{r} 4.2429E-0011 \ cc \\ 4.313 \pm 0.014 \ E-10 \\ 8E-0011 \ ccNTP/g \\ -0.663766 \\ -0.019301 \\ 0.023320 \end{array}$	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12 Integ Age 40Ar ³ (40Ar (36Ar (37Ar (39Ar	0. 6. 1. 0. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 2. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm 858 \pm 118$ am = 12 am = 0.0 am = 0.0	$1.709 \\ 4.378 \\ 1.471 \\ 1.432 \\ 0.590 \\ 2.803 \\ 1.521 \\ 0.560 \\ 0.483 \text{ Ma} \\ 10.165 \pm \\ 344.33 \pm 140 \\ 00008101 \pm \\ 00093232 \pm \\ 00008101 \pm \\ 00093232 \pm \\ 00008101 \pm \\ 00093232 \pm \\ 00008101 \pm \\ 0008101 \pm \\ 0008101$	m m m m m m m m wt. 0.02 433.71 =0.000013 =0.000106	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19 Mean 35	$\begin{array}{rcrcr} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.3 \\ \pm & 0.4 \\ \end{array}$	 2 E-12 3 E-12 3 E-12 4 E-12 5 E-12 2 E-12 6 E-12 8 E-12 92.509 	\pm (\pm 21 Total Total Total Corr Corr	0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%) 490 Mi 39K Vol 40Ar* V Atm 404 36/40 & 36/40 & 37/40 &	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035 a (90.74) $1 = 4$ $7ol = 4$ Ar Vol = 1.057 $39/40 ratios = 4$ $37/40 ratios = 4$ $39/40 ratios = 4$	$\begin{array}{r} -0.000002 \\ -0.000002 \\ 8\% & -0.000008 \\ 5\% & -0.000005 \\ 9\% & 0.000001 \\ 9\% & -0.000001 \\ 9\% & -0.000002 \\ 9\% & -0.000016 \\ 5\% & -0.000027 \\ \end{array}$ $\begin{array}{r} 4.2429E-0011 \ cc \\ 4.313 \pm 0.014 \ E-10 \\ 8E-0011 \ cc \\ NTP/g \\ -0.663766 \\ -0.019301 \\ 0.023320 \\ \end{array}$	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12 Integ Age 40Ar ³ (40An (36An (37An (39An 37Ca	0. 6. 1. 0. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 2. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm 858 \pm 118$ am = 12 am = 0.0 am = 0.0 am = 0.0 9.710 \pm 12000000000000000000000000000000000	$\begin{array}{c} 1.709\\ 4.378\\ 1.471\\ 1.432\\ 0.590\\ 2.803\\ 1.521\\ 0.560\\ \end{array}$ $\begin{array}{c} 0.483 \text{ Ma}\\ 10.165 \pm\\ 344.33 \pm 14\\ 00008101 \pm\\ 00093232 \pm\\ 09602087 \pm\\ 1.105 \text{ E-3}\\ \end{array}$	m m m m m m m w t. 0.00 433.71 =0.000013 =0.000106	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19 Mean 35	$\begin{array}{rcrcr} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.3 \\ \pm & 0.4 \end{array}$	 2 E-12 3 E-12 3 E-12 4 E-12 5 E-12 2 E-12 6 E-12 8 E-12 92.509 	$\begin{array}{c} 2 & (\\ 2 & (\\ 2 & (\\ 2 & (\\ 2 & (\\ 2 & (\\ (\\ 2 & (\\ (\\ 2 & (\\ (\\ $	0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%) 40Ar* V 40Ar* V Atm 404 36/40 & 36/40 & 37/40 & / 39K =	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035 a (90.74) 1 = 4 Vol = 1.057 39/40 ratios = 3 37/40 ratios = 3 39/40 ratios = 1.396 ± 0.569 H	$\begin{array}{r} -0.000002 \\ -0.000002 \\ 3\% \\ -0.000008 \\ 5\% \\ -0.000001 \\ 0\% \\ -0.000001 \\ 0\% \\ -0.000016 \\ 5\% \\ -0.000027 \\ 0\% \\ -0.000027 \\ 0\% \\ -0.000027 \\ 0\% \\ -0.000016 \\ 0.000027 \\ 0\% \\ -0.000016 \\ 0.000027 \\ 0\% \\ -0.000016 \\ 0.000027 \\ 0\% \\ -0.000016 \\ 0.000027 \\ 0\% \\ -0.000016 \\ 0.0000027 \\ 0\% \\ -0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0.0000027 \\ 0\% \\ 0\% \\ 0.0000027 \\ 0\% \\ 0\% \\ 0\% \\ 0.0000027 \\ 0\% \\ 0\% \\ 0\% \\ 0\% \\ 0\% \\ 0\% \\ 0\% \\ 0$	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655
6 7 8 9 10 11 12 Integ Age 40Ar ³ (40Ar (36Ar (37Ar (39Ar 37Ca	0. 6. 1. 0. 1. 2. 1. 1. 2. 1. 1. 1. 5. 7. 7. 40Ar)s 7. 7. 40Ar)s 7. 7. 40Ar)s 7. 7. 40Ar)s 7. 7. 40Ar)s 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	$212 \pm 724 \pm 404 \pm 643 \pm 118 \pm 096 \pm 701 \pm 709 \pm 858 \pm 118$ am = 12 am = 0.0 am = 0.0 am = 0.0 = 9.710 \pm = 100000000000000000000000000000000	$\begin{array}{c} 1.709\\ 4.378\\ 1.471\\ 1.432\\ 0.590\\ 2.803\\ 1.521\\ 0.560\\ \end{array}$ $\begin{array}{c} 0.483 \text{ Ma}\\ 10.165 \pm\\ 344.33 \pm 14\\ 00008101 \pm\\ 00093232 \pm\\ 09602087 \pm\\ 1.105 \text{ E-3}\\ 1.782 \pm 0.2\\ \end{array}$	m m m m m m m wt. 0.03 433.71 =0.000013 =0.000106 =0.0002803	64.33 22.71 37.19 20.05 69.44 21.31 12.90 79.19 Mean 35	$\begin{array}{rcrr} \pm & 0.5 \\ \pm & 0.3 \\ \pm & 0.4 \\ \pm & 0.4 \\ \pm & 0.3 \\ \pm & 0.3 \\ \pm & 0.4 \\ \end{array}$	 2 E-12 3 E-12 3 E-12 4 E-12 5 E-12 2 E-12 6 E-12 8 E-12 92.509 	2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (0.8%) 1.4%) 1.1%) 2.1%) 0.8%) 1.5%) 2.8%) 0.6%) 40Ar* V 40Ar* V Atm 40/ 36/40 & 36/40 & 37/40 & / 39K =	2.6849 1.4303 2.1046 0.9971 0.3420 -0.0054 0.6730 0.1035 a (90.74) l = $\frac{1}{2}$ Ar Vol = 1.057 39/40 ratios = $\frac{1}{3}$ 39/40 ratios = $\frac{1}{3}$ 39/40 ratios = $\frac{1}{3}$	$\begin{array}{r} -0.000002 \\ -0.000002 \\ -0.000008 \\ -0.000005 \\ 0.000001 \\ 0.000001 \\ 0.000001 \\ 0.000002 \\ -0.000016 \\ 0.000016 \\ 0.000027 \\ -0.000002 \\ -0.00000 \\ -0.0000 \\ -0.0000 \\ -0.00000 \\ -0.00000 \\ -0.0000 \\ -0.0000$	0.000882 0.006229 0.002472 0.003954 0.003989 0.779774 0.024489 0.216655

F1 = -6.926 E-6

DP11-77 P59-020muscovite

No	Name	;		Temp	Cum	39K			Age			40Ar*	/ 39K	
1	20-01 1.5	W 30	-0	1	0.028	395		93.691	l ±	2.031	Ma	10.373	±	0.23
2	20-02 1.6	W 30	-0	2	0.052	269		85.535	5 ±	3.234	Ma	9.449	±	0.37
3	20-03 1.7	W 30	-0	3	0.273	345		97.499) ±	0.291	Ma	10.806	±	0.03
4	20-04 1.7	W 30	-0	4	0.425	502	1	100.642	2 ±	0.778	Ma	11.165	±	0.09
5	20-05 1.8	W 30	-0	5	0.479	923		99.98() ±	2.020	Ma	11.089	±	0.23
6	20-06 1.9	W 30	-O	6	0.591	117	1	101.900) ±	0.971	Ma	11.308	±	0.11
7	20-07 2.1	W 30	-O	7	0.682	258	1	100.412	2 ±	0.967	Ma	11.138	±	0.11
8	20-08 2.6	W 30	-0	8	0.730)31	1	103.281	l ±	2.068	Ma	11.466	±	0.24
9	20-09 3.5	W 30	-O	9	0.874	409	1	104.808	3 ±	0.781	Ma	11.640	±	0.09
10	20-10 4.5	W 20	kН	10	0.998	330	1	106.885	5 ±	0.939	Ma	11.878	±	0.11
11	20-11 4.5	W 20	kН	11	1.000	000	1	163.950) ±	46.689	Ma	18.513	±	5.52
No	Name			Cum 36S		40	Ar / 3	6Ar		2	40ArAcc/g		37Ca	/ 39K
1	20-01 1.5W	30-0	1	0.15304		3974.	61 ±		1072.78		9.4E-0013	5	.512 ±	16.031 m
2	20-02 1.6W	30-0	1	0.19938		9368.	$65 \pm$	1	1016.97		2.8E-0013	27	$.868 \pm$	10.748 m
3	20-03 1.7W	30-0		0.44723		18339.4	$40 \pm$		2005.66		1.5E-0012	10.	$010 \pm$	1.340 m
4	20-04 1.7W	30-0		0.57210		25702.3	$38 \pm$	1	6668.87		7.6E-0013	3	.572 ±	3.521 m
5	20-05 1.8W	30-0		0.56268	-	-119389	.81 ±	93	30021.21	-	5.8E-0014	-20.	513 ±	12.487 m
6	20-06 1.9W	30-0		0.62750		36903.0)5 ±	4	2624.66		4.0E-0013	3	.663 ±	3.005 m
7	20-07 2 1W	30-0		0.69525		284704	19 +	2	5486 40		4 1E-0013	12	516+	3 478 m
8	20 07 2.1 W	30-0		0.71149		63460 9	23 +	27	7158.05		9.9E_0014	25	$970 \pm$	6 338 m
9	20 00 2.0 W	30-0		0.90905		16176	15 +	27	6303 14		1.2E_0012	16	$140 \pm$	2 156 m
10	20-07 5.5 W	2012H	r	1.01366		26735.9	85 ±	2	0525 78		6.4E_0013	56	281 ±	2.150 m 2.801 m
10	20-10 4.5 W	20KI	L LI	1.01300			11 ±	2	17155 30)	-8 4E-0014	50. 622	$201 \pm$	2.091 m 130 672 m
11	20-11 4.5 4	V 20K	.1	1.00000		-4011.	11 -		1/1/0.0	,	-0.4L-0014	022		459.072 m
No	38C1/	39K			40A	r* Vol c	cNTI	P/g			Atm Cont		F1	F2
1	4.093	±	6.009	m	11.67	±	0.26	E-12	(2.2%)	7.4347%	-0.000	0004	0.000542
2	5.770	±	2.420	m	8.72	±	0.34	E-12	(3.9%)	3.1541%	-0.000	020	0.007402
3	1.774	±	0.990	m	92.69	±	0.49	E-12	(0.5%)	1.6113%	-0.000	0007	0.004641
4	1.099	±	1.443	m	65.75	±	0.60	E-12	(0.9%)	1.1497%	-0.000	0003	0.002264
5	-1.130	±	2.166	m	23.36	±	0.46	E-12	(2.0%)	-0.2475%	0.000	015	0.058539
6	453.488	±	735.702	μ	49.18	±	0.52	E-12	(1.1%)	0.8007%	-0.000	0003	0.003300
7	1.764	±	1.579	m	39.56	±	0.42	E-12	(1.1%)	1.0379%	-0.000	0009	0.008760
8	-2.137	±	2.094	m	21.26	±	0.45	E-12	(2.1%)	0.4656%	-0.000	018	0.038351
9	-0.214	±	1.015	m	65.03	±	0.58	E-12	(0.9%)	1.8267%	-0.000	012	0.006107
10	555.139	±	837.032	μ	57.32	±	0.57	E-12	(1.0%)	1.1053%	-0.000	0040	0.033782
11	-105.990	±	101.991	m	1.22	±	0.36	E-12	(29.7%)	-7.3670%	-0.000)444	0.042594
Integrat	ted Results:													
	Age $= 101$.	$086 \pm$:	0.545 Ma	L				v	Vt. Mea	n Age =	99.345 :	± 4.496	Ma (19.59)
40	$\Delta r^* / 39K =$	000 -	11 21	5+	0.042				Tot	al 30K	Vol	= 3.9	2854F-0	011 ccNTP/g
10	11 / J)IX		11.21.	5 -	0.012				Total	10 A r* V	vol =	4 358 + 1	005 IE 0	.10
									Total -	+UAL V	01 -	4.338 ± 1	5.010 E-	.10
(40A)	r / 36Ar)sam =	= 2132	20.34 ± 4	4644.34					Total A	Atm 40	Ar Vol = 6.124	45E-0012	ccNTP	g
(36A	r / 40Ar)sam =	= 0.00	004690	± 0.000014	435				Corr 3	6/40 &	39/40 ratios =	-0.66158	8	
(37A)	r / 40Ar)sam =	= 0.00	137288	± 0.000130)36				Corr 3	6/40 &	37/40 ratios =	-0.02485	8	
(39A	r / 40Ar)sam =	= 0.08	792834	± 0.000281	170				Corr 3	7/40 &	39/40 ratios =	0.030017	7	
370-	/39K = 1.56	1 + 0	148 F-2						3801/	39K =	7 209 + 4 925	F-4		
Gal.	K =	2 865	1 10 L-2	F-2					C1/K		$= 1514 \pm 1$	- 1 034 F-4		
Са/ F1 —	1 114 E 5	2.000	0.272	, L -∠					$E^{2} = 0$	- 101 E	1.J1+ ± 1.	0J7 Ľ − †		
$\Gamma_1 =$	-1.114 E-J								$\Gamma \angle = 8$.101 E-	2			

DP12-80 P59-007 muscovite

					Frac	ctions:											
	No	Name		Tem	p Cur	n 39K			Age				40Ar*	/ 39	K		
1	7-01	1.5W 17-	Oc	1	0.	00087	322.	369	±	81.180	Ma		38.074	±	10.	47	
2	7-02	1.6W 17-	Oc	2	0.	00722	126.	955	±	10.822	Ma		14.188	±	1.	25	
3	7-03	1.7W 17-	Oc	3	0.	05204	102.	116	±	1.454	Ma		11.333	±	0.	17	
4	7-04	1.8W 17-	Oc	4	0.	17010	114.	253	±	0.719	Ma		12.723	±	0.	08	
5	7-05	1.8W 17-	Oc	5	0.	22692	112.	367	±	1.660	Ma		12.506	±	0.	19	
6	7-06	2.0W 17-	Oc	6	0.	30447	111.	900	±	0.794	Ma		12.453	±	0.	09	
7	7-07	2.5W 17-	Oc	7	0	47241	121.	727	±	0.527	Ma		13.584	±	0.	06	
8	7-08	3.5W 17-	Oc	8	0.	86546	122.	972	±	0.337	Ma		13.727	±	0.	04	
9	7-09	4.5W 20k	Нz	9	0.	98558	125.	669	±	0.557	Ma		14.039	±	0.	06	
10	7-10	4.5W 20k	chz	10	0.	99610	192.	159	±	6.390	Ma		21.872	±	0.	77	
11	7-11	5.0W 20k	Нz	11	1.	00000	518.	057	±	14.350	Ma		64.732	±	2.	06	
No		Name		Cum 36S	5				40A	.r / 36Ar		40ArAcc	/g		3'	7Ca / 39	K
1	7-01	1.5W 17-	Oc	0.03299	19	$39.65 \pm$		293	2.45		2.6E-	0013	78.1	$23 \pm$	1	57.445	m
2	7-02 1.0	6W 17-Oc		0.05756	62	$98.48 \pm$		1119	0.49		1.9E-	0013	168.1	$74 \pm$		85.907 n	n
3	7-03 1.	7W 17-Oc		0.04959	-10409	$7.70 \pm$	5	2129	8.45	-6	5.2E-0	0014	33.2	19 ±		4.933 r	n
4	7-04 1.3	8W 17-Oc		0.08016	807	$70.36 \pm$	1	0384(0.02		2.4E-	0013	28.8	$76 \pm$		10.470 n	n
5	7-05 1.3	8W 17-Oc		0.11468	340	$17.82 \pm$		5794	0.16		2.7E-	0013	21.4	$37 \pm$		3.205 r	n
6	7-06 2.0	0W 17-Oc		0.24467	124	$67.53 \pm$		332	2.30		1.0E-	0012	23.9	96 ±		2.709 r	n
7	7-07 2.:	5W 17-Oc		0.49719	150	$95.48 \pm$		264	0.02		2.0E-	0012	16.0	$08 \pm$		1.159 r	n
8	7-08 3.:	5W 17-Oc		0.66875	518	$17.93 \pm$		1880	5.51		1.3E-	0012	38.4	$-06 \pm$		2.954 r	n
9	7-09 4	4.5W 20kF	łz	0.67695	33704	41.84	±160)5430	.68	(6.4E-	0014	566	5.160	±	4.757	7 m
10	7-10 4	4.5W 20kh	Z	0.88792	20	82.98	±	42	1.02		1.6E-	0012	978	8.172	±	24.746	5 m
11	7-11 5	5.0W 20kF	łz	1.00000	39	82.96	±	138	2.77	1	8.7E-	0013]	1.255	±	0.091	l
No		38	C1 / 39K		$40 \mathrm{Ar}^{2}$	* Vol	ccN	ΓΡ/σ				Atm Con	ŀ		F1		2
1	2	30 985+	50 809) m	1 43 +	0.39	E	-12	(2	7 2%)		15 2347%		-0.00	00056	0.00	200886
2	3	38.357±	20.466	5 m	3.89 ±	0.34	Ē	-12	(-	8.8%)		4.6916%	,	-0.00)0120	0.0	19376
3	-	0.411±	1.280) m	21.94 ±	0.33	E	-12	(1.5%)		-0.2839%)	-0.00	00024	0.0	93519
4	-	-0.735±	2.614	l m	64.85 ±	0.47	E	-12	(0.7%)		0.3659%		-0.00	00021	0.04	48536
5		0.374±	1.234	l m	$30.68 \pm$	0.48	E	-12	(1.6%)		0.8687%		-0.00	00015	0.0	15879
6		0.920±	2.077	7 m	$41.70 \pm$	0.34	E	-12	(0.8%)		2.3702%		-0.00	00017	0.00)6494
7		$1.046\pm$	0.983	3 m	$98.50 \pm$	0.61	E	-12	(0.6%)		1.9575%		-0.00	00011	0.00	04838
8		$1.785\pm$	0.82	m	$232.97 \pm$	1.28	E	-12	(0.5%)		0.5703%		-0.00	00027	0.03	38690
9	79	92.008±	907.472	2 μ	$72.81~\pm$	0.48	E	-12	(0.7%)		0.0877%		-0.00	00404	0.79	91339
10	-	-0.748±	5.202	2 m	$9.94 \ \pm$	0.34	E	-12	(3.4%)		14.1864%	,)	-0.00)0698	0.02	21165
11	4	14.378±	30.967	7 m	$10.89~\pm$	0.31	E	-12	(2.9%)		7.4191%		-0.00)0895	0.0	18703

Age = 122.346 ± 0.597 Ma

Wt. Mean Age = $120.91 \pm 28.30 \text{ Ma}(126.58)$

40Ar* / 39K =	$13.655 \pm$	0.045	Total 39K V	ol	= 4.3179E-0011 ccNTP/g
			Total 40Ar*	Vol =	5.896 ± 0.018 E-10
(40 Ar / 36 Ar) sam = 22	$2666.25 \pm 3428.$	17	Total Atm 4	0 Ar Vol = 7.	7882E-0012 ccNTP/g
(36Ar / 40Ar)sam = 0.	00004412 ±0.00	0000938	Corr 36/40 a	& 39/40 ratio	os =-0.609391
(37 Ar / 40 Ar) sam = 0.	00795692 ± 0.00	0014263	Corr 36/40	& 37/40 ratio	os =-0.081413
(39 Ar / 40 Ar) sam = 0.	07227837 ± 0.00	0016416	Corr 37/40	& 39/40 ratio	os =0.099963
$37Ca / 39K = 1.101 \pm$	0.020 E-1		38Cl / 39K =	= 1.432 ± 0.5	556 E-3
Ca / K = 2.0	20 ± 0.036 E-1		Cl / K	= 3.008 =	± 1.167 E-4

F2 = 4.790 E-2

F1 = -7.853 E-5

DP12-81 P59-008 muscovite

	Name		Temp	Cum 39	Ж	A	ge		40Ar*	/ 39K	
8-01	1.5W	16-Oc	1	0.006	63 5	$6.274 \pm$	2.719	Ma	6.166	± 0.3	0
8-02	1.6W	16-Oc	2	0.0204	44 7	$6.737 \pm$	1.282	Ma	8.456	± 0.1	4
8-03	1.7W	16-Oc	3	0.079	55 9	$0.574 \pm$	0.485	Ma	10.019	± 0.0	6
8-04	1.8W	16-Oc	4	0.1388	83 11	$1.387 \pm$	0.534	Ma	12.394	± 0.0	6
8-05	1.8W	16-Oc	5	0.2193	34 13	$0.817 \pm$	0.318	Ma	14.635	± 0.0)4
8-06	1.9W	16-Oc	6	0.2570	03 11	5.891 ±	1.031	Ma	12.911	± 0.1	2
8-07	1.9W	16-Oc	7	0.3628	84 12	4.278 \pm	0.459	Ma	13.878	± 0.0	5
8-08	2.0W	16-Oc	8	0.438	15 11	$6.675 \pm$	0.553	Ma	13.001	± 0.0	6
8-09	2.5W	16-Oc	9	0.6794	45 12	9.031 ±	0.429	Ma	14.428	± 0.0	5
8-10	4.4W	20kHz	10	0.7552	20 13	0.257 \pm	0.616	Ma	14.570	± 0.0	07
8-11	4.5W	20kHz	11	0.850	76 13	1.081 \pm	0.475	Ma	14.666	± 0.0	6
8-12	4.5W	20kHz	12	0.8949	91 13	1.849 \pm	0.587	Ma	14.755	± 0.0	07
8-13	4.5W	20kHz	13	1.0000	00 12	$9.762 \pm$	0.501	Ma	14.513	± 0.0	6
	Name	(Cum 36S		40Ar /	36Ar		40ArAcc/g		37Ca	/ 39K
8-01	1.5W	16-Oc	0.03442		$1537.92 \pm$	315.	61	1.3E-0012	1.8	$888 \pm$	7.972 m
8-02	1.6W	16-Oc	0.05831		$5409.05 \pm$	1568.9	96	9.1E-0013	1	$1.832 \pm$	3.522 m
8-03	1.7W	16-Oc	0.19164		$4944.02 \pm$	381.	63	5.1E-0012	2	4.972 ±	1.610 m
8-04	1.8W	16-Oc	0.42568		$3580.00\pm$	127.	69	8.9E-0012	14	$4.910 \pm$	1.818 m
8-05	1.8W	16-Oc	0.49335]	$18515.02\pm$	2372.2	25	2.6E-0012	2	$2.872~\pm$	1.534 m
8-06	1.9W	16-Oc	0.51332	2	$25794.27\pm$	15779.4	17	7.6E-0013	_4	$4.374 \pm$	3.341 m
8-07	1.9W	16-Oc	0.63247	1	13191.66±	1646.	15	4.5E-0012		$3.030 \pm$	0.871 m
8-08	2.0W	16-Oc	0.72220]	$11712.12 \pm$	1842.8	30	3.4E-0012	9	$9.253 \pm$	1.184 m
8-09	2.5W	16-Oc	0.90858	1	$19840.97\pm$	1229.0	51	7.1E-0012	($6.134 \pm$	1.307 m
8-10	4.4W	20kHz	0.91992	10	$02190.62\pm$	145575.2	27	4.3E-0013	8	$8.806 \pm$	1.165 m
8-11	4.5W	20kHz	0.94166	($57739.29\pm$	46416.6	54	8.3E-0013	8	$8.151 \pm$	0.852 m
8-12	4.5W	20kHz	0.98340]	$16623.23\pm$	2424.7	72	1.6E-0012	20	$6.283 \pm$	2.085 m
8-13	4.5W	20kHz	1.00000	ç	96444.64±	102170.8	9	6.3E-0013	2′	$7.085 \pm$	0.487 m
		38C1 / 30K		40 4 +*	Vol a	NTD/a		Atm Cont		F1	F3
	3 307+	- 2 964	m	5 49 +	0.27	F_{-12} (4 9%)	19 2143%		-0.000001	0.000105
	6.058+	- 2.904	m	5. 7 9 ±	0.27	E-12 (1.970)	5 4631%		-0.000001	0.000105
	4 3 2 9 +	- 0.486	m '	$79.64 \pm$	0.26	E-12 ((1.070)	5.9769%		-0.000008	0.001987
	1 765+	- 0.720	m ()8 78 +	0.50	E-12 (0.770)	8 2542%		-0.000004	0.000041
-84	48 096+	- 578 783	ш 1 ⁴	58 43 +	0.00	E-12 (0.6%)	1 5960%		-0.0000011	0.001092
0	-0 198+	- 1 551	μ 1. m (55 42 +	0.57	E-12 (0.0%)	1.1456%		0.000002	0.000990
7.	44 518+	- 475.245	u 10	97.44 +	1 17	E 12 (0.5%)	2 2401%		-0.0000002	0.000784
7.	40 972+	- 688 326	μ 12 μ 12	31 65 +	0.87	E-12 (0.0%)	2.2101%		-0.000002	0.002259
,	1 438+	- 0.429	m 40	58 10 +	2.55	E-12 (0.5%)	1 4893%		-0.000004	0.002312
3	51.492+	491.716	u 14	48.40 ±	0.97	E-12 (0.7%)	0.2892%		-0.000006	0.016909
8	05.507±	466.583	u 18	38.45 ±	1.12	E-12 (0.6%)	0.4362%		-0.000006	0.010359
0	1.753±		m	87.58 ±	0.51	E-12 (0.6%)	1.7776%		-0.000019	0.008042
9	88.752±	234.844	μ 20)5.07 ±	1.24	E-12 (0.6%)	0.3064%		-0.000019	0.047725
	8-01 8-02 8-03 8-04 8-05 8-06 8-07 8-08 8-09 8-10 8-11 8-12 8-13 8-01 8-02 8-03 8-04 8-03 8-04 8-05 8-06 8-07 8-08 8-09 8-10 8-11 8-12 8-13	Name 8-01 1.5W 8-02 1.6W 8-03 1.7W 8-04 1.8W 8-05 1.8W 8-05 1.8W 8-06 1.9W 8-07 1.9W 8-08 2.0W 8-09 2.5W 8-10 4.4W 8-11 4.5W 8-12 4.5W 8-13 4.5W Name 8-01 1.5W 8-02 1.6W 8-03 1.7W 8-04 1.8W 8-05 1.8W 8-05 1.8W 8-06 1.9W 8-07 1.9W 8-08 2.0W 8-08 2.0W 8-07 1.9W 8-08 2.0W 8-08 2.0W 8-08 2.5W 8-10 4.4W 8-11 4.5W 8-12 4.5W 8-13 4.5W 8-13 4.5W 3.307± 6.058± 4.329± 1.765± -848.096± -0.198± 744.518± 740.972± 1.438± 351.492± 805.507± 1.438± 351.492± 805.507± 1.438± 351.492± 805.507± 1.438± 351.492± 805.507± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755± 1.755±	Name8-01 $1.5W$ 16 -Oc8-02 $1.6W$ 16 -Oc $8-03$ $1.7W$ 16 -Oc $8-04$ $1.8W$ 16 -Oc $8-05$ $1.8W$ 16 -Oc $8-06$ $1.9W$ 16 -Oc $8-07$ $1.9W$ 16 -Oc $8-08$ $2.0W$ 16 -Oc $8-09$ $2.5W$ 16 -Oc $8-09$ $2.5W$ 16 -Oc $8-10$ $4.4W$ $20kHz$ $8-11$ $4.5W$ $20kHz$ $8-12$ $4.5W$ $20kHz$ $8-13$ $4.5W$ $20kHz$ $8-13$ $4.5W$ $20kHz$ $8-01$ $1.5W$ 16 -Oc $8-02$ $1.6W$ 16 -Oc $8-03$ $1.7W$ 16 -Oc $8-04$ $1.8W$ 16 -Oc $8-05$ $1.8W$ 16 -Oc $8-06$ $1.9W$ 16 -Oc $8-06$ $1.9W$ 16 -Oc $8-07$ $1.9W$ 16 -Oc $8-08$ $2.0W$ 16 -Oc $8-09$ $2.5W$ 16 -Oc $8-08$ $2.0W$ 16 -Oc $8-09$ $2.5W$ 16 -Oc $8-10$ $4.4W$ $20kHz$ $8-11$ $4.5W$ $20kHz$ $8-12$ $4.5W$ $20kHz$ $8-13$ $4.5W$ $20kHz$ $8-13$ $4.5W$ $20kHz$ $8-14$ $4.5W$ $20kHz$ $8-15$ $4.5W$ $20kHz$ $8-16$ $4.5W$ $20kHz$ $8-17$ $4.5W$ $20kHz$ $8-13$ $4.5W$	NameTemp $8-01$ $1.5W$ $16-Oc$ 1 $8-02$ $1.6W$ $16-Oc$ 2 $8-03$ $1.7W$ $16-Oc$ 3 $8-04$ $1.8W$ $16-Oc$ 4 $8-05$ $1.8W$ $16-Oc$ 6 $8-07$ $1.9W$ $16-Oc$ 7 $8-08$ $2.0W$ $16-Oc$ 8 $8-09$ $2.5W$ $16-Oc$ 9 $8-10$ $4.4W$ $20kHz$ 11 $8-12$ $4.5W$ $20kHz$ 12 $8-13$ $4.5W$ $20kHz$ 13 Name $Cum 36S$ $8-01$ $1.5W$ $16-Oc$ 0.03442 $8-02$ $1.6W$ $16-Oc$ 0.19164 $8-04$ $1.8W$ $16-Oc$ 0.19164 $8-04$ $1.8W$ $16-Oc$ 0.42568 $8-05$ $1.8W$ $16-Oc$ 0.42568 $8-05$ $1.8W$ $16-Oc$ 0.7220 $8-06$ $1.9W$ $16-Oc$ 0.7220 $8-07$ $1.9W$ $16-Oc$ 0.7220 $8-08$ $2.0W$ $16-Oc$ 0.90858 $8-10$ $4.4W$ $20kHz$ 0.91992 $8-11$ $4.5W$ $20kHz$ 0.9000 $38c1/39K$ $3.307\pm$ 2.964 m $6.058\pm$ 2.260 m 6 $4.329\pm$ 0.486 m 7 $4.329\pm$ 0.486 m 7 $4.329\pm$ 0.486 m 7 $740.972\pm$ 688.326 μ 17 </td <td>Name Temp Cum 39 8-01 1.5W 16-Oc 1 0.0066 8-02 1.6W 16-Oc 2 0.0204 8-03 1.7W 16-Oc 3 0.0793 8-04 1.8W 16-Oc 4 0.1383 8-05 1.8W 16-Oc 5 0.2193 8-06 1.9W 16-Oc 8 0.438 8-09 2.5W 16-Oc 9 0.6794 8-10 4.4W 20kHz 10 0.7555 8-11 4.5W 20kHz 12 0.8944 8-13 4.5W 20kHz 13 1.0000 Name Cum 36S 8-01 1.5W 16-Oc 0.03442 8-02 1.6W 16-Oc 0.042568 8 1.0000 Name Cum 36S 8-05 1.8W 16-Oc 0.63247 1.5 8-06 1.9W 16-Oc 0.63247 1.5 8-06 <</td> <td>NameTempCum 39K8-011.5W16-Oc10.0066358-021.6W16-Oc20.0204478-031.7W16-Oc30.0795598-041.8W16-Oc40.13883118-051.8W16-Oc50.21934138-061.9W16-Oc60.25703118-071.9W16-Oc70.36284128-082.0W16-Oc80.43815118-092.5W16-Oc90.67945128-104.4W20kHz100.75520138-114.5W20kHz131.0000012NameCum 36S40Ar/8-011.5W16-Oc0.034421537.92±8-021.6W16-Oc0.058315409.05±8-031.7W16-Oc0.425683580.00±8-051.8W16-Oc0.425683580.00±8-051.8W16-Oc0.7222011712.12±8-061.9W16-Oc0.7222011712.12±8-071.9W16-Oc0.7222011712.12±8-082.0W16-Oc0.9085819840.97±8-104.4W20kHz0.91992102190.62±8-114.5W20kHz0.91992102190.62±8-124.5W20kHz0.91992102190.62±8-104.4W20kHz0.91992102190.62±<td>Name Temp Cum 39K Ag 8-01 1.5W 16-Oc 1 0.00663 56.274 ± 8-02 1.6W 16-Oc 2 0.02044 76.737 ± 8-03 1.7W 16-Oc 3 0.07955 90.574 ± 8-04 1.8W 16-Oc 4 0.13883 111.387 ± 8-05 1.8W 16-Oc 6 0.25703 115.891 ± 8-06 1.9W 16-Oc 7 0.36284 124.278 ± 8-08 2.0W 16-Oc 8 0.43815 116.675 ± 8-09 2.5W 16-Oc 9 0.67945 129.031 ± 8-10 4.4W 20kHz 10 0.75520 130.257 ± 8-11 4.5W 20kHz 13 1.00000 129.762 ± 8-13 4.5W 20kHz 13 1.00000 129.762 ± 315. 8-02 1.6W 16-Oc 0.05831 5409.05 ± 1563. 8-03</td><td>NameTempCum9KAge8-011.5W16-Oc10.00663$56.274 \pm$2.7198-021.6W16-Oc20.02044$76.737 \pm$1.2828-031.7W16-Oc30.07955$90.574 \pm$0.4858-041.8W16-Oc40.13883111.387 ±0.3188-051.8W16-Oc60.25703115.891 ±1.0318-071.9W16-Oc70.36284124.278 ±0.4598-082.0W16-Oc90.67945129.031 ±0.4298-092.5W16-Oc90.67945129.031 ±0.4298-104.4W20kHz100.75520130.257 ±0.6168-114.5W20kHz110.85076131.081 ±0.4758-124.5W20kHz131.00000129.762 ±0.501NameCum 36S40Ar/36Ar8-011.5W16-Oc0.034421537.92±315.618-021.6W16-Oc0.0425683580.00±127.698-031.7W16-Oc0.425683580.00±127.698-041.8W16-Oc0.425683580.00±127.698-051.8W16-Oc0.425683580.00±127.698-071.9W16-Oc0.5133225794.27±1579.478-071.9W16-Oc0.722011712.12±1842.808-082.0</td><td>Name Temp Cum 39K Age 8-01 1.5W 16-Oc 1 0.00663 56.274 ± 2.719 Ma 8-02 1.6W 16-Oc 2 0.02044 76.737 ± 1.282 Ma 8-03 1.7W 16-Oc 3 0.07955 90.574 ± 0.485 Ma 8-04 1.8W 16-Oc 5 0.21934 130.817 ± 0.318 Ma 8-05 1.9W 16-Oc 6 0.25703 115.891 ± 1.031 Ma 8-06 1.9W 16-Oc 8 0.43815 116.675 ± 0.553 Ma 8-08 2.0W 16-Oc 9 0.67945 129.031 ± 0.429 Ma 8-10 4.4W 20kHz 11 0.85076 131.081 ± 0.475 Ma 8-11 4.5W 20kHz 13 1.00000 129.762 ± 0.501 Ma 8-13 4.5W 20kHz 13 1.00000 129.762</td><td>Name Temp Cum 39K Age 40Ar* 8-01 1.5W 16-Oc 1 0.00663 56.274 \pm 2.719 Ma 8.456 8-02 1.6W 16-Oc 2 0.02044 76.737 \pm 1.282 Ma 8.456 8-03 1.7W 16-Oc 4 0.13883 111.387 \pm 0.534 Ma 12.394 8-05 1.8W 16-Oc 5 0.21934 130.817 \pm 0.318 Ma 12.944 8-06 1.9W 16-Oc 6 0.25703 115.891 \pm 1.031 Ma 12.911 8-07 1.9W 16-Oc 9 0.67945 129.031 \pm 0.429 Ma 14.428 8-10 4.4W 20kHz 10 0.75520 130.257 \pm 0.616 Ma 14.570 8-11 4.5W 20kHz 13 1.08000 129.762 \pm 0.501 Ma 14.513 Name Cum 36S 40Ar/ 364r</td><td>Name Temp Cum 39K Age 40A** / 39K 8-01 1.5W 16-Oc 1 0.00663 56.274 \pm 2.719 Ma 6.166 \pm 0.3 8-02 1.6W 16-Oc 2 0.02044 76.737 \pm 1.282 Ma 8.456 \pm 0.0 8-04 1.8W 16-Oc 4 0.13883 111.387 \pm 0.534 Ma 12.491 \pm 0.0 8-05 1.8W 16-Oc 5 0.21934 13.0817 \pm 0.318 Ma 12.435 \pm 0.459 Ma 13.878 \pm 0.0 8-06 1.9W 16-Oc 7 0.36284 12.9.031 \pm 0.429 Ma 13.878 \pm 0.0 8-00 1.9W 16-Oc 9 0.67945 12.9.031 \pm 0.429 Ma 14.458 \pm 0.0 8-10 4.4W 20kHz 10 0.75520 130.6257 \pm 0.517 Ma 14.502 \pm 0.40 8-11 4.5W</td></td>	Name Temp Cum 39 8-01 1.5W 16-Oc 1 0.0066 8-02 1.6W 16-Oc 2 0.0204 8-03 1.7W 16-Oc 3 0.0793 8-04 1.8W 16-Oc 4 0.1383 8-05 1.8W 16-Oc 5 0.2193 8-06 1.9W 16-Oc 8 0.438 8-09 2.5W 16-Oc 9 0.6794 8-10 4.4W 20kHz 10 0.7555 8-11 4.5W 20kHz 12 0.8944 8-13 4.5W 20kHz 13 1.0000 Name Cum 36S 8-01 1.5W 16-Oc 0.03442 8-02 1.6W 16-Oc 0.042568 8 1.0000 Name Cum 36S 8-05 1.8W 16-Oc 0.63247 1.5 8-06 1.9W 16-Oc 0.63247 1.5 8-06 <	NameTempCum 39K8-011.5W16-Oc10.0066358-021.6W16-Oc20.0204478-031.7W16-Oc30.0795598-041.8W16-Oc40.13883118-051.8W16-Oc50.21934138-061.9W16-Oc60.25703118-071.9W16-Oc70.36284128-082.0W16-Oc80.43815118-092.5W16-Oc90.67945128-104.4W20kHz100.75520138-114.5W20kHz131.0000012NameCum 36S40Ar/8-011.5W16-Oc0.034421537.92±8-021.6W16-Oc0.058315409.05±8-031.7W16-Oc0.425683580.00±8-051.8W16-Oc0.425683580.00±8-051.8W16-Oc0.7222011712.12±8-061.9W16-Oc0.7222011712.12±8-071.9W16-Oc0.7222011712.12±8-082.0W16-Oc0.9085819840.97±8-104.4W20kHz0.91992102190.62±8-114.5W20kHz0.91992102190.62±8-124.5W20kHz0.91992102190.62±8-104.4W20kHz0.91992102190.62± <td>Name Temp Cum 39K Ag 8-01 1.5W 16-Oc 1 0.00663 56.274 ± 8-02 1.6W 16-Oc 2 0.02044 76.737 ± 8-03 1.7W 16-Oc 3 0.07955 90.574 ± 8-04 1.8W 16-Oc 4 0.13883 111.387 ± 8-05 1.8W 16-Oc 6 0.25703 115.891 ± 8-06 1.9W 16-Oc 7 0.36284 124.278 ± 8-08 2.0W 16-Oc 8 0.43815 116.675 ± 8-09 2.5W 16-Oc 9 0.67945 129.031 ± 8-10 4.4W 20kHz 10 0.75520 130.257 ± 8-11 4.5W 20kHz 13 1.00000 129.762 ± 8-13 4.5W 20kHz 13 1.00000 129.762 ± 315. 8-02 1.6W 16-Oc 0.05831 5409.05 ± 1563. 8-03</td> <td>NameTempCum9KAge8-011.5W16-Oc10.00663$56.274 \pm$2.7198-021.6W16-Oc20.02044$76.737 \pm$1.2828-031.7W16-Oc30.07955$90.574 \pm$0.4858-041.8W16-Oc40.13883111.387 ±0.3188-051.8W16-Oc60.25703115.891 ±1.0318-071.9W16-Oc70.36284124.278 ±0.4598-082.0W16-Oc90.67945129.031 ±0.4298-092.5W16-Oc90.67945129.031 ±0.4298-104.4W20kHz100.75520130.257 ±0.6168-114.5W20kHz110.85076131.081 ±0.4758-124.5W20kHz131.00000129.762 ±0.501NameCum 36S40Ar/36Ar8-011.5W16-Oc0.034421537.92±315.618-021.6W16-Oc0.0425683580.00±127.698-031.7W16-Oc0.425683580.00±127.698-041.8W16-Oc0.425683580.00±127.698-051.8W16-Oc0.425683580.00±127.698-071.9W16-Oc0.5133225794.27±1579.478-071.9W16-Oc0.722011712.12±1842.808-082.0</td> <td>Name Temp Cum 39K Age 8-01 1.5W 16-Oc 1 0.00663 56.274 ± 2.719 Ma 8-02 1.6W 16-Oc 2 0.02044 76.737 ± 1.282 Ma 8-03 1.7W 16-Oc 3 0.07955 90.574 ± 0.485 Ma 8-04 1.8W 16-Oc 5 0.21934 130.817 ± 0.318 Ma 8-05 1.9W 16-Oc 6 0.25703 115.891 ± 1.031 Ma 8-06 1.9W 16-Oc 8 0.43815 116.675 ± 0.553 Ma 8-08 2.0W 16-Oc 9 0.67945 129.031 ± 0.429 Ma 8-10 4.4W 20kHz 11 0.85076 131.081 ± 0.475 Ma 8-11 4.5W 20kHz 13 1.00000 129.762 ± 0.501 Ma 8-13 4.5W 20kHz 13 1.00000 129.762</td> <td>Name Temp Cum 39K Age 40Ar* 8-01 1.5W 16-Oc 1 0.00663 56.274 \pm 2.719 Ma 8.456 8-02 1.6W 16-Oc 2 0.02044 76.737 \pm 1.282 Ma 8.456 8-03 1.7W 16-Oc 4 0.13883 111.387 \pm 0.534 Ma 12.394 8-05 1.8W 16-Oc 5 0.21934 130.817 \pm 0.318 Ma 12.944 8-06 1.9W 16-Oc 6 0.25703 115.891 \pm 1.031 Ma 12.911 8-07 1.9W 16-Oc 9 0.67945 129.031 \pm 0.429 Ma 14.428 8-10 4.4W 20kHz 10 0.75520 130.257 \pm 0.616 Ma 14.570 8-11 4.5W 20kHz 13 1.08000 129.762 \pm 0.501 Ma 14.513 Name Cum 36S 40Ar/ 364r</td> <td>Name Temp Cum 39K Age 40A** / 39K 8-01 1.5W 16-Oc 1 0.00663 56.274 \pm 2.719 Ma 6.166 \pm 0.3 8-02 1.6W 16-Oc 2 0.02044 76.737 \pm 1.282 Ma 8.456 \pm 0.0 8-04 1.8W 16-Oc 4 0.13883 111.387 \pm 0.534 Ma 12.491 \pm 0.0 8-05 1.8W 16-Oc 5 0.21934 13.0817 \pm 0.318 Ma 12.435 \pm 0.459 Ma 13.878 \pm 0.0 8-06 1.9W 16-Oc 7 0.36284 12.9.031 \pm 0.429 Ma 13.878 \pm 0.0 8-00 1.9W 16-Oc 9 0.67945 12.9.031 \pm 0.429 Ma 14.458 \pm 0.0 8-10 4.4W 20kHz 10 0.75520 130.6257 \pm 0.517 Ma 14.502 \pm 0.40 8-11 4.5W</td>	Name Temp Cum 39K Ag 8-01 1.5W 16-Oc 1 0.00663 56.274 ± 8-02 1.6W 16-Oc 2 0.02044 76.737 ± 8-03 1.7W 16-Oc 3 0.07955 90.574 ± 8-04 1.8W 16-Oc 4 0.13883 111.387 ± 8-05 1.8W 16-Oc 6 0.25703 115.891 ± 8-06 1.9W 16-Oc 7 0.36284 124.278 ± 8-08 2.0W 16-Oc 8 0.43815 116.675 ± 8-09 2.5W 16-Oc 9 0.67945 129.031 ± 8-10 4.4W 20kHz 10 0.75520 130.257 ± 8-11 4.5W 20kHz 13 1.00000 129.762 ± 8-13 4.5W 20kHz 13 1.00000 129.762 ± 315. 8-02 1.6W 16-Oc 0.05831 5409.05 ± 1563. 8-03	NameTempCum9KAge8-011.5W16-Oc10.00663 $56.274 \pm$ 2.7198-021.6W16-Oc20.02044 $76.737 \pm$ 1.2828-031.7W16-Oc30.07955 $90.574 \pm$ 0.4858-041.8W16-Oc40.13883111.387 ±0.3188-051.8W16-Oc60.25703115.891 ±1.0318-071.9W16-Oc70.36284124.278 ±0.4598-082.0W16-Oc90.67945129.031 ±0.4298-092.5W16-Oc90.67945129.031 ±0.4298-104.4W20kHz100.75520130.257 ±0.6168-114.5W20kHz110.85076131.081 ±0.4758-124.5W20kHz131.00000129.762 ±0.501NameCum 36S40Ar/36Ar8-011.5W16-Oc0.034421537.92±315.618-021.6W16-Oc0.0425683580.00±127.698-031.7W16-Oc0.425683580.00±127.698-041.8W16-Oc0.425683580.00±127.698-051.8W16-Oc0.425683580.00±127.698-071.9W16-Oc0.5133225794.27±1579.478-071.9W16-Oc0.722011712.12±1842.808-082.0	Name Temp Cum 39K Age 8-01 1.5W 16-Oc 1 0.00663 56.274 ± 2.719 Ma 8-02 1.6W 16-Oc 2 0.02044 76.737 ± 1.282 Ma 8-03 1.7W 16-Oc 3 0.07955 90.574 ± 0.485 Ma 8-04 1.8W 16-Oc 5 0.21934 130.817 ± 0.318 Ma 8-05 1.9W 16-Oc 6 0.25703 115.891 ± 1.031 Ma 8-06 1.9W 16-Oc 8 0.43815 116.675 ± 0.553 Ma 8-08 2.0W 16-Oc 9 0.67945 129.031 ± 0.429 Ma 8-10 4.4W 20kHz 11 0.85076 131.081 ± 0.475 Ma 8-11 4.5W 20kHz 13 1.00000 129.762 ± 0.501 Ma 8-13 4.5W 20kHz 13 1.00000 129.762	Name Temp Cum 39K Age 40Ar* 8-01 1.5W 16-Oc 1 0.00663 56.274 \pm 2.719 Ma 8.456 8-02 1.6W 16-Oc 2 0.02044 76.737 \pm 1.282 Ma 8.456 8-03 1.7W 16-Oc 4 0.13883 111.387 \pm 0.534 Ma 12.394 8-05 1.8W 16-Oc 5 0.21934 130.817 \pm 0.318 Ma 12.944 8-06 1.9W 16-Oc 6 0.25703 115.891 \pm 1.031 Ma 12.911 8-07 1.9W 16-Oc 9 0.67945 129.031 \pm 0.429 Ma 14.428 8-10 4.4W 20kHz 10 0.75520 130.257 \pm 0.616 Ma 14.570 8-11 4.5W 20kHz 13 1.08000 129.762 \pm 0.501 Ma 14.513 Name Cum 36S 40Ar/ 364r	Name Temp Cum 39K Age 40A** / 39K 8-01 1.5W 16-Oc 1 0.00663 56.274 \pm 2.719 Ma 6.166 \pm 0.3 8-02 1.6W 16-Oc 2 0.02044 76.737 \pm 1.282 Ma 8.456 \pm 0.0 8-04 1.8W 16-Oc 4 0.13883 111.387 \pm 0.534 Ma 12.491 \pm 0.0 8-05 1.8W 16-Oc 5 0.21934 13.0817 \pm 0.318 Ma 12.435 \pm 0.459 Ma 13.878 \pm 0.0 8-06 1.9W 16-Oc 7 0.36284 12.9.031 \pm 0.429 Ma 13.878 \pm 0.0 8-00 1.9W 16-Oc 9 0.67945 12.9.031 \pm 0.429 Ma 14.458 \pm 0.0 8-10 4.4W 20kHz 10 0.75520 130.6257 \pm 0.517 Ma 14.502 \pm 0.40 8-11 4.5W

DP12-81 P59-008 muscovite

Age	$= 123.258 \pm$	0.560 Ma	Wt. Mean Age = 122.43	± 107.15 Ma 732.	56)	
40Ar*	/ 39K =	$13.760 \pm$	0.031	Total 39K Vol	=	1.3445E-0010 ccNTP/g
				Total 40Ar* Vol =		$1.850 \pm 0.004 \ E\text{-}9$
(40Ar	/ 36Ar)sam = 140	693.75 ±	637.22	Total Atm 40Ar Vol	= 3.79	71E-0011 ccNTP/g
(36Ar	(40 Ar) sam = 0.0	00006806 ± 0.000	000413	Corr 36/40 & 39/40 1	ratios	-0.447266
(37Ar	(40 Ar) sam = 0.0	00066726 ± 0.000	003172	Corr 36/40 & 37/40 t	ratios	=-0.014876
(39Ar	$(40 \text{Ar}) \sin \theta = 0.0$	07121103 ±0.000	009636	Corr 37/40 & 39/40 1	ratios	=0.016375
37Ca /	39K = 9.3	$370 \pm 0.445 \text{ E-3}$		38Cl / 39K =	1.157 :	± 0.175 E-3
С	a / K =	1.719 ± 0.082 E	-2	Cl/K =	2.429	± 0.367 E-4
F1 = -6	5.684 E-6			F2 = 2.725 E-3		

DP12-81 P59-209 Total-fusion garnets

No	Name	e 7	Гетр	Cum 39K		Age			40.	Ar* / 39	Ж	
1	214-00 f	fuse 26-	0	0.00000	260.05	$57 \pm$	16.050	Ma	30.	$174 \pm$	2.0)0
2	209a-00	29-Jan-	0	0.00000	135.17	$0 \pm$	4.818	Ma	15.	$141 \pm$	0.5	56
3	209b-00	29-Jan-	0	0.00000	629.94	$9 \pm$	26.924	Ma	81.	$325 \pm$	4.1	2
4	209c-00	fuse 29	0	0.00000	2.44	41 ±	0.042	Ga	558.	$197 \pm$	17.4	7
5	209d-00	29-Jan-	0	0.00000	200.69	4 ±	7.472	Ma	22.	$899 \hspace{0.1in} \pm \hspace{0.1in}$	0.9	90
No	Name	e	Cum 36S			404	Ar / 36Ar		40ArAcc/g	3	7Ca /	39K
1	214-00 f	fuse 26-	0.00000	2163.2	$8 \pm$	884.13	3		7.5E-0013 1	01.915 ± 3	304.85	8 m
2	209a-00	29-Jan-	0.00000	183	2.20 ±	349.50)		1.6E-0012	21.096	5±	0.169
3	209b-00	29-Jan-	0.00000	972	8.11 ± 1	3196.80	1		2.1E-0013	56.240) ±	2.080
4	209c-00	fuse 29	0.00000	314	1.92 ±	323.75	5		2.8E-0012	63.315	5±	2.695
5	209e-00	29-Jan-	0.00000	277	2.12 ±	884.07	7		1.3E-0012	81.886	5±	0.694
No	38C1 /	39K		40Ar*	Vol cc	NTP/g			Atm Cont		F1	F2
1	$-2.746 \pm$	10.953	m	$4.75 \pm$	0.31	E-12 (6.5%)		13.6598%	-0.00	00073	0.001687
2	$6.700 \pm$	2.743	m	$8.25 \pm$	0.31	E-12 (3.7%)		16.1282%	-0.0	15048	0.364897
3	-20.494 \pm	37.242	m	$6.61 \pm$	0.29	E-12 (4.4%)		3.0376%	-0.04	40117	0.631501
4	$20.244 \ \pm$	59.959	m	$27.13 \pm$	0.40	E-12 (1.5%)		9.4051%	-0.04	45164	0.041319
5	$10.132 \pm$	7.693	m	$10.55 \pm$	0.41	E-12 (3.9%)		10.6597%	-0.0	58411	0.695384

DP12-87b P59-026 muscovite

	No	N	lame	Т	emp	Cum 39K		Age		40Ar*	/ 39K		
1	26-01	1.5W	1-N		1	0.00028	64.268 ±	= 40.89	97 Ma	7.057	± 4	1.57	
2	26-02	1.5W	1-N		2	0.00070	49.012 ±	= 32.59	93 Ma	5.359	± 3	3.61	
3	26-03	1.5W	1-N		3	0.01244	68.812 ±	= 1.11	1 Ma	7.566	± (0.12	
4	26-04	1.6W	1-N		4	0.01706	69.138 ±	= 2.37	7 Ma	7.603	± ().27	
5	26-05	1.7W	/ 1-N		5	0.02626	71.577 ±	= 1.73	31 Ma	7.876	± ().19	
6	26-06	1.7W	/ 1-N		6	0.05477	70.609 ±	= 0.53	37 Ma	7.767	± ().06	
7	26-07	3.5W	1-N		7	0.10911	71.282 ±	= 0.39	00 Ma	7.843	± ().04	
8	26-08	4.5W	20kH		8	0.15042	70.802 ±	= 0.41	9 Ma	7.789	± ().05	
9	26-09	4.5W	20kH		9	0.49725	71.892 ±	= 0.13	34 Ma	7.911	± (0.02	
10	26-10	4.5W	20kH		10	0.60419	72.305 ±	= 0.15	54 Ma	7.958	± (0.02	
11	26-11	4.5W	20kH		11	0.63672	71.134 ±	= 0.51	3 Ma	7.826	± (0.06	
12	26-12	4.5W	20kH		12	0.84447	72.026 ±	= 0.10)5 Ma	7.926	± ().01	
13	26-13	4.5W	20kH		13	0.96762	72.707 ±	= 0.17	74 Ma	8.003	± (0.02	
14	26-14	4.5W	20kH		14	0.98310	71.127 ±	= 0.73	6 Ma	7.826	± ().08	
15	26-15	4 5W	20kH		15	1 00000	72,909 -	- 1.22	25 Ma	8 026	+ () 14	
10	20 15	1.5 11	2011		10	1.00000	12.909 -	- 1.22		0.020	- (
No		Name		Cum 3	365	40Ar	/ 36Ar		40/	ArAcc/g		37Ca /	39K
1	26-01	1 5W	1-N	0.002	219	1735 11	+	5457 52	8 9E-0014	_9	7 899 +	169 440	m
2	26-02	1.5 W	1-N	0.000	071	-2030 17	+	10750 53	-6 0E-0014	2	8 103 +	85 731	m
3	26-03	1.5 W	1-N	0.024	570	5861.20	+	1792.36	1.0E-0012	-	4 425 +	3 039	m
4	26-04	1.5 W	1 I.N	0.02	979	13717 84	+	21549 31	1.0E 0012	_	3341 +	8 889	m
5	26-05	1.0 W	1 I.N	0.02	739	4404 80	+	1491 10	1.7E 0013		7.608 +	4 738	m
6	26.06	1.7 W	1 I.N	0.00	593	7437 17	+	1291.10	2 0E-0012		$9.950 \pm$	1 774	m
7	26.07	3 5W	1 I.N	0.10	026	10664 97	+	1908 33	2.6E-0012		6 451 +	0 770	m
8	26-08	4 5W	20kH	0.221	142	10138 12	+	1961.02	2.0E 0012 2.1E-0012	1	$0.101 \pm 0.307 \pm$	1.626	m
9	26-00	4.5W	20kH	0.221	165	8550.83	 	334 53	2.1E-0012 2.1E-0011	1	$5.307 \pm$	0.253	m
10	26-07	4.5W	20kH	0.74	976	75965.00	 	25666 25	7.2E-0011		$3.167 \pm$	0.200	m
11	26-10	4.5W	20kH	0.75	842 842	43755 91	 	45463.03	7.2E-0013 3.7E-0013		$4.276 \pm$	2 429	m
12	26-11	4.5W	20KH	0.700	865	18675.68		1057.45	5.7E-0013		$4.270 \pm$	0.330	m
12	26-12	4.5W	20kH	0.900	052 052	25226.63	 	4557 39	2.5E-0012			0.550	m
13	26-13	4.5W	20kH	0.970	550	12945 91	 	5543 18	6.1E-0012		$0.958 \pm$	6 1 2 2	m
15	26-14	л.5 W	20KH	1 000	000	1/0/3 10	- -	10701.60	5.9E-0013		$0.750 \pm$ 0.410 \pm	8 9/5	m
15	20-15	ч.5 W	20811	1.000	000	1777,17	±	10701.00	5.9E-0015	-	0.419 ±	0.945	111
No		2801	/ 201/	-	,	10 A #* Wal	a NT	יD/a	Α.	tm Cont	Е1		БЭ
1	22	644 ±	. 757N	- ! m	135 60	+0AI VOI	2 E 15	(64.7%)	17 0306%	un Com	0.00007	0 0 005	Γ2 541
1 2	52. 20	.0 44 ⊥ 210 ⊥	. 25.035	5 m	435.09	\perp 201. \perp 220	05 E-15 71 E 15	(04.770)	17.030070		0.00007	0 0.003	/20
2	29. 1	.319 ±	. 0.060) m	10.25	\perp 320. \perp 0	22 E 12	(07.470)	-14.33337%		-0.00002	10 0.003	0005
3 1	1.	.700 ⊥ 	2 2 1 2) III) m	7.60	\perp 0.	35 E-12 27 E 12	(1.770)	2 15410/0		-0.00000	13 0.000	640
4	-1.	220 ±	1 201	- 111 - m	15 70	\pm 0. \pm 0	27 E-12 20 E 12	(3.570)	2.134170		0.00000	0.001	107
5	1.	201 ±	1.301		13.70	\pm 0.	39 E-12 42 E-12	(2.370)	0.708076		-0.00000	0.001	102
07	1.	.41/ ±	1.041	. 111 7 - 112	4/.9/ =	± 0.	42 E-12	(0.9%)	3.9733% 2.77080/		-0.00000	0.002	.343 1272
/ 0	1.	.349 ±	106 807	7	92.55	± 0.	00 E-12	(0.770)	2.7708%		-0.00000	0.002	210
0	823. 1	$\pm 200 \pm$	400.807	, μ	09.08 ×	± 0.	34 E-12	(0.870)	2.914/%		-0.00000	0.003	(76
9	1.	.290 ±	: 0.193	o m	594.39 : 194.25	± 3.	12 E-12	(0.5%)	3.4558%		-0.00000	14 0.001	0/0
10	//8.	.96/ ±	: 305.823	ομ ·	184.35	± 0.	96 E-12	(0.5%)	0.3890%		-0.00000	12 0.008	541
11	l. 1	.∠33 ±	0.613	om 7	55.15 : 256 71	± 0.	48 E-12	(0.9%)	0.0/33%		-0.00000		042
12	l. •	228 ±	0.147	m	336.71	± l.	84 E-12	(0.5%)	1.5823%		-0.00000	0.002	.943
13	l. •	$410 \pm$	0.261	m	213.49	± l.	1/E-12	(0.5%)	1.17/14%		-0.00000	0.004 0.004	809
14	1.	.695 ±	0.733	6 m	26.23	± 0.	30 E-12	(1.1%)	2.2826%		-0.00000	0.000	1432
15	-0.	799 ±	2.830) m	29.39	\pm 0.	46 E-12	(1.6%)	1.9775%		0.00000	0.000	214

DP12-87b P59-026 muscovite

Age = 71.867 ± 0.326 Ma		Wt. Mean Age =	72.04 ± 0.40 Ma (3.87)
$40 \text{Ar}^* / 39 \text{K} = 7.909 \pm$	0.020	Total 39K Vol	= 2.1662E-0010 ccNTP/g
		Total 40Ar* Vol =	1.713 ± 0.004 E-9
$(40 \text{Ar} / 36 \text{Ar}) \text{sam} = 12673.77 \pm$	486.62	Total Atm 40Ar Vol =	= 4.0897E-0011 ccNTP/g
$(36 \text{Ar} / 40 \text{Ar}) \text{sam} = 0.00007890 \pm 0.000$	000423	Corr 36/40 & 39/40 r	atios =-0.576718
$(37 \text{Ar} / 40 \text{Ar}) \text{sam} = 0.00065070 \pm 0.000$	003450	Corr 36/40 & 37/40 r	atios =-0.014034
$(39 \text{Ar} / 40 \text{Ar}) \text{sam} = 0.12349555 \pm 0.000$	13350	Corr 37/40 & 39/40 r	atios =0.015699
$37Ca / 39K = 5.269 \pm 0.279 E-3$		38C1/39K = 1	.218 ± 0.114 E-3
$Ca / K = 9.668 \pm 0.513 E$	-3	Cl/K = 2	$2.558 \pm 0.239 \text{ E-4}$
F1 = -3.759 E-6		F2 = 2.295 E-3	

DP12-94 P59-070 plagioclase

-		•		
Hin	0.01	10	no	٠
1 ° L	au		115	1.2

Ν	lo 1	Nar	ne	Temp	Cu	m 39K		Age		40Ar*	/ 39K		
1	70-01 1.5	5W	23-J	1	0.	.29638	106.218 =	± 17.447	Ma	11.802 ±	2.0	0	
2	70-02 1.6	5W	23-J	2	0.	.68351	95.372 =	± 12.870	Ma	10.564 ±	1.4	6	
3	70-03 1.7	7W	23-Ј	3	0.	.76470	59.357 =	£ 61.598	Ma	6.509 ±	6.8	7	
4	70-04 2.0)W	23-Ј	4	0.	.87286	101.343 =	£ 54.744	Ma	11.245 ±	6.2	5	
5	70-05 3.5	5W	23-Ј	5	0.	.99425	656.034 =	± 37.154	Ma	85.344 ±	5.7	7	
6	70-06 4.5	5W	20kH	6	1.	.00000	357.636 =	£ 630.431	Ma	42.667 ±	82.9	1	
No	Na	me		Cum 365	5			40Ar / 36Ar	40ArAc	c/g		37Ca / 3	39K
1	70-01 1.5	5W	23-J	0.32336	5	68	$9.77 \pm$	154.64	1.1E-00)12	$1.292 \pm$	0.′	786
2	70-02 1.6	6W	23-J	0.35059)	5771.80	±	14716.60	9.5E-0014	393	$.664 \pm$	251.640	m
3	70-03 1.7	7W	23-Ј	0.38251		898.95	±	1929.26	1.1E-0013	2	.572 ±	2.820	
4	70-04 2.0)W	23-Ј	0.40867	7	1989.71:	±	6314.83	9.2E-0014	-88	.400 ±	927.636	m
5	70-05 3.5	5W	23-Ј	0.47970)	5612.21	±	6088.69	2.5E-0013	-27	.176 ±	924.576	m
6	70-06 4.5	5W	20kH	1.00000)	312.70	±	26.78	1.8E-0012	-26	.656 ±	47.760	
No	38	3Cl	/ 39K	_	404	Ar*Vol	ccNTP	/g	Atm C	ont	F1		F2
1	-17.571	±	32.560	m	$1.51 \pm$	0.26	E-12	(16.9%)	42.840	6% -	0.000922	0.0110	009
2	10.697	±	11.436	m	$1.77 \pm$	0.24	E-12	(13.8%)	5.119	7% -	0.000281	0.053	676
3	37.537	±	86.080	m	228.52 ±	240.77	E-15	(105.4%)	32.871	7% -	0.001835	0.060′	738
4	16.570	±	38.741	m	525.83 ±	291.51	E-15	(55.4%)	14.851	4%	0.000063	0.003	672
5	5.679	±	34.072	m	$4.48~\pm$	0.27	E-12	(6.1%)	5.265	3%	0.000019	0.0004	454
6	-1.046	±	3.125	i	$106.16 \pm$	150.19	E-15	(141.5%)	94.499	6%	0.019014	0.016	060
Integr	ated Results:												
Age	= 175.965 ±	£	11.923 N	la Wt	. Mean	Age =	122.78 ±	= 313.35 M	(32.26)				
40Ar*	- / 39K =		$19.937 \pm$	1.4	15			Гotal 39K Vo	1 =	= 4.3237E	E-0013 ccN	NTP/g	
							-	Fotal 40Ar* V	Vol =	8.620 ± 0.6	503 E-12		
(40Ar	/ 36Ar)sam =	=	102	22.21 ±	175.50)		Fotal Atm 40.	Ar Vol = 3.50	53E-0012 co	eNTP/g		
(36Ar	/ 40Ar)sam =	= 0	.00097827	± 0.000206	03		(Corr 36/40 &	39/40 ratios =	-0.560712			
(37Ar	/ 40Ar)sam =	= 0	.02061068	±0.014959	20		(Corr 36/40 &	37/40 ratios =	-0.059682			
(39Ar	/ 40Ar)sam =	= 0	.03565753	± 0.001822	35		(Corr 37/40 &	39/40 ratios =	0.060885			
37Ca	/39K = 5.78	30 ±	= 4.188 E-1					38Cl / 39K =	-0.156 ± 2.137	7 E-2			
Ca / I	K = 1.0)61	± 0.768				(Cl/K = -C	0.327 ± 4.487	E-3			
F1 = -	4.123 E-4]	F2 = 5.442 E-	-3				

DP12-94 P59-072 biotite

					F	Fraction	ns:								
	No	Nai	me	Ten	np (Cum 39	ЭK		Age			40Ar*	/ 39K		
1	72-01	1.5W	15 - J		0	0.000	75	28.435	±	102.923	Ma	3.092	± 11.2	28	
2	72-02	1.6W	15-J		2	0.041	30	72.926	±	4.275	Ma	8.028	± 0.	48	
3	72-03	1.7W	15 - J		3	0.117	54 1	08.082	±	1.643	Ma	12.015	± 0.	19	
4	72-04	1.8W	15 - J		4	0.174	05 1	13.150	±	1.946	Ma	12.596	± 0.	22	
5	72-05	1.8W	15-J		5	0.443	78 1	05.621	±	0.574	Ma	11.733	± 0.	07	
6	72-06	1.9W	15-J		6	0.639	95 1	02.202	±	0.549	Ma	11.343	± 0.	06	
7	72-07	2.0W	15-J		7	0.752	86 1	02.138	±	0.836	Ma	11.335	± 0.	10	
8	72-08	2.1W	15-J		8	0.940	59 1	02.623	±	0.594	Ma	11.391	± 0.	07	
9	72-09	3.5W	15 - J		9	0.965	59 1	05.648	±	4.164	Ma	11.736	± 0.	48	
10	72-10	4.5W	20kH		10	0.993	22 1	06.156	±	2.912	Ma	11.794	± 0.	33	
11	72-11	4.5W	20kH		11	1.000	00	81.924	±	11.717	Ma	9.041	± 1.	32	
No		Name		Cum 3	6S	40	Aı	/ 36Ar			40ArAcc/g	5	37Ca /	39K	
1	72-01	1.5W	15-J	0.000	73	3	91.18±	= 4	61.84		2.8E-0013		$-1.118 \pm$	1.284	
2	72-02	1.6W	15-J	0.438	59	3	17.68±	=	1.42	2	1.7E-0010		$37.086 \pm$	20.863	m
3	72-03	1.7W	15-J	0.728	72	3	89.70±	=	1.59)	1.1E-0010		$19.302 \pm$	36.266	m
4	72-04	1.8W	15-J	0.794	91	6	16.33±	=	11.44		2.6E-0011		$29.848 \pm$	40.689	m
5	72-05	1.8W	15-J	0.915	61	10	77.88±	=	14.24		4.7E-0011		$14.561 \pm$	6.406	m
6	72-	1.9W	15-J	0.941	48	28	61.59±	= 12	20.24		1.0E-0011		$18.864 \pm$	7.180	m
7	72-07	2.0W	15-J	0.951	29	41	90.10±	= 42	27.00		3.8E-0012	-	$20.960 \pm$	19.127	m
8	72-08	2.1W	15-J	0.958	50	91	45.91±	= 150	08.08		2.8E-0012		$27.340 \pm$	10.138	m
9	72-09	3.5W	15-J	0.966	23	14	26.35±	= 2	17.82		3.0E-0012		$76.139 \pm$	63.696	m
10	72-10	4.5W	20kH	0.982	26	9	02.36±	=	51.53		6.3E-0012	1	$84.633 \pm$	37.493	m
11	72-11	4.5W	20kH	1.000	00	3	98.54±	=	20.06		6.9E-0012		$22.035 \pm$	168.979	m
No		38Cl	/ 39K			2	40Ar* `	Vol ccN	TP/g		Atm Con	ıt	F1		F2
1	-26	$8.056 \pm$	175.305	m		92	2.06 ± 3	335.78 E	2-15 (3	364.7%)	75.5409	9%	0.000797	0.0089	955
2	4	$.386 \pm$	2.642	m	12.85	±	0.77	E-12	(6.0%)	93.01	80%	-0.000026	0.000	002
3	3	.023 ±	2.575	m	36.17	±	0.52	E-12	(1.4%)	75.82	69%	-0.000014	0.0000	029
4	-0	$.809 \pm$	2.648	m	28.10	±	0.50	E-12	(1.8%)	47.94	55%	-0.000021	0.000	191
5	1	.842 ±	0.543	m	124.95	±	0.90	E-12	(0.7%)	27.41	48%	-0.000010	0.0002	261
6	1	.811 ±	0.584	m	87.84	±	0.62	E-12	(0.7%)	10.32	64%	-0.000013	0.001	178
7	-2	.819 ±	3.137	m	50.53	±	0.47	E-12	(0.9%)	7.05	23%	0.000015	0.0020	001
8	1	.468 ±	1.284	m	84.42	±	0.63	E-12	(0.8%)	3.23	10%	-0.000020	0.0058	381
9	5	.283 ±	4.955	m	11.58	±	0.47	E-12	(4.0%)	20.71	72%	-0.000054	0.0019) 91
10	1	.584 ±	3.089	m	12.87	±	0.36	E-12	(2.8%)	32.74	76%	-0.000132	0.002	516
11	-26	.354 ±	15.856	m	2.42	±	0.35	E-12	(14.6%)	74.14	54%	-0.000016	0.0000)54

Age = 103.093 ± 0.588 Ma		Wt. Mean Age = $103.54 \pm$	3.385 Ma (11.34)							
$40 \text{Ar}^* / 39 \text{K} = 11.444 \pm$		0.049	Total 39K Vol	= 3.9480E-0011 ccNTP/g						
				Total 40Ar* Vol =	$4.518 \pm 0.019 \ E10$					
(40Ar	/ 36Ar)sam =	636.97 ±	2.59	Total Atm 40Ar Vol = 3	3.9100E-0010 ccNTP/g					
(36Ar	/ 40 Ar) sam = 0.0	00156994 ±0.000	000723	Corr 36/40 & 39/40 ratios =-0.374132						
(37Ar	/ 40 Ar) sam = 0.0	00100093 ±0.000	026809	Corr 36/40 & 37/40 rat	ios =-0.013501					
(39Ar	$(40 \text{Ar}) \sin \theta = 0.0$	04684254 ±0.000	010512	Corr 37/40 & 39/40 ratios =0.004336						
37Ca /	$39K = 2.137 \pm$	0.572 E-2		$38C1/39K = 9.671 \pm 5.848 \text{ E-4}$						
C	a / K =	3.921 ± 1.050 E-	-2	Cl/K = 2.	$031 \pm 1.228 \text{ E-4}$					
F1 = -2	1.524 E-5			F2 = 1.629 E-4						

DP12-94 P59-218 muscovite

Fractions: 40Ar* / 39K Cum 39K No Name Temp Age 218-01 1.6W 2-0.00019 41.398 Ma 1 1 $68.948 \hspace{0.2cm} \pm \hspace{0.2cm}$ 7.581 ± 4.64 2 218-02 1.5W 2-2 0.00252 $61.097 \ \pm$ 2.787 Ma $6.703 \pm$ 0.31 3 218-03 1.5W 2-3 0.01220 $62.013 \pm$ 0.616 Ma $6.805 \pm$ 0.07 4 218-04 1.6W 2-4 0.02217 $64.873 \pm$ 0.688 Ma $7.125 \pm$ 0.08 1.7W 5 218-05 2-5 0.04536 $63.517 \pm$ 0.402 Ma $6.973 \pm$ 0.04 6 218-06 1.8W 2-6 0.06280 $64.322 \pm$ 0.499 Ma $7.063 \pm$ 0.06 7 218-07 1.9W 4-7 $63.729 \ \pm$ 0.391 Ma 6.997 ± 0.04 0.08104218-08 2.5W 8 4-8 0.13125 $71.762 \pm$ 0.218 Ma $7.897 \pm$ 0.02 9 218-09 3.5W 4-9 0.23233 $72.520 \pm$ 0.136 Ma $7.982 \pm$ 0.02 10 218-10 4.5W 20k 10 0.35521 $71.852 \pm$ 0.232 Ma $7.907 \pm$ 0.03 218-11 4.5W 20k 0.64002 $71.400 \pm$ 0.215 Ma $7.856 \pm$ 0.02 11 11 $71.072 \pm$ 12 218-12 4.5W 20k 0.72240 0.136 Ma $7.819 \pm$ 0.02 12 218-13 4.5W 20k 0.78183 $72.013 \pm$ 0.178 Ma $7.925 \pm$ 0.02 13 13 14 218-14 4.5W 20k $72.313 \ \pm$ $7.959 \pm$ 0.01 14 0.87575 0.117 Ma 15 218-15 4.5W 20k 15 0.91949 $72.087 \ \pm$ 0.221 Ma $7.933 \pm$ 0.02 218-16 5.0W $73.982 \ \pm$ 16 20k 16 0.99765 0.154 Ma $8.146 \pm$ 0.02 17 218-17 5.5W 20k 17 1.00000 $104.607 \hspace{0.2cm} \pm \hspace{0.2cm}$ 2.986 Ma $11.617 \pm$ 0.34

No	Name		Cum 36S	40Ar / 36A	r	40ArAcc/g	37Ca	/ 39K 1
	218-01 1.6W	2-	-0.00222	$\textbf{-1282.22} \pm $	4169.66	-1.1E-0013	$0.828 \pm$	1.086
2	218-02 1.5W	2-	0.02452	$1732.60 \pm$	387.06	1.3E-0012	$1.988\pm$	51.100 m
3	218-03 1.5W	2-	0.17228	$1394.33 \pm$	51.41	7.0E-0012	$18.646 \pm$	10.633 m
4	218-04 1.6W	2-	0.20154	$6272.98 \pm$	1298.53	1.4E-0012	$25.793 \pm$	15.628 m
5	218-05 1.7W	2-	0.25098	$8346.63 \pm$	1418.97	2.4E-0012	$13.318 \pm$	6.457 m
6	218-06 1.8W	2-	0.26997	$16276.74 \pm$	6638.16	9.0E-0013	$8.440\pm$	11.646 m
7	218-07 1.9W	4-	0.31984	$6596.04 \pm$	745.09	2.4E-0012	$45.062 \pm$	12.180 m
8	218-08 2.5W	4-	0.40584	$11647.91 \pm$	951.60	4.1E-0012	$29.387 \pm$	5.526 m
9	218-09 3.5W	4-	0.56778	$12563.29\pm$	783.31	7.7E-0012	$7.950 \pm$	3.276 m
10	218-10 4.5W	20k	0.64394	$31709.91 \pm$	5897.30	3.6E-0012	-12.411 \pm	3.231 m
11	218-11 4.5W	20k	0.92862	$19649.75 \pm$	3583.37	1.4E-0011	$24.538 \pm$	3.581 m
12	218-12 4.5W	20k	0.93744	$180037.74 \pm$	185210.76	4.2E-0013	$18.625 \pm$	2.251 m
13	218-13 4.5W	20k	0.94783	$111986.00 \pm$	90882.60	4.9E-0013	$24.197 \pm$	3.196 m
14	218-14 4.5W	20k	0.96318	$120166.65 \pm$	59647.55	7.3E-0013	$15.525 \pm$	2.608 m
15	218-15 4.5W	20k	0.97027	$120846.37 \pm$	135880.37	3.4E-0013	$22.005 \pm$	5.498 m
16	218-16 5.0W	20k	0.99244	$71015.89\pm$	23130.87	1.1E-0012	$20.678 \pm$	3.119 m
17	218-17 5.5W	20k	1.00000	$9194.58 \pm$	7975.82	3.6E-0013	$95.176 \pm$	98.249 m

DP12-94 P59-218 muscovite

38Cl / 39K		40Ar* Vol cc	NTP/g			Atm Cont	F1	F2
$\textbf{-36.430} \hspace{0.2cm} \pm \hspace{0.2cm}$	51.392 m	$564.78 \pm \ 345.30$	E-15	(61.1%)	-23.0460%	-0.000591	0.051230
$4.065 \ \pm$	1.775 m	6.19 ± 0.29	E-12	(4.6%)	17.0553%	-0.000001	0.000118
$2.649 \ \pm$	0.795 m	26.16 ± 0.29	E-12	(1.1%)	21.1930%	-0.000013	0.000827
$-1.105 \pm$	0.796 m	28.18 ± 0.32	E-12	(1.1%)	4.7107%	-0.000018	0.005991
1.870 \pm	0.511 m	64.13 ± 0.52	E-12	(0.8%)	3.5404%	-0.000010	0.004268
1.680 \pm	0.475 m	48.89 ± 0.44	E-12	(0.9%)	1.8155%	-0.000006	0.005301
$623.525 \ \pm$	616.942 μ	50.63 ± 0.38	E-12	(0.7%)	4.4800%	-0.000032	0.011178
1.572 \pm	0.250 m	157.30 ± 0.86	E-12	(0.5%)	2.5369%	-0.000021	0.011645
1.107 \pm	0.285 m	320.09 ± 1.69	E-12	(0.5%)	2.3521%	-0.000006	0.003397
1.202 \pm	0.197 m	385.47 ± 2.12	E-12	(0.6%)	0.9319%	0.000009	0.013961
$1.133 \pm$	0.150 m	887.71 ± 5.13	E-12	(0.6%)	1.5038%	-0.000018	0.016593
1.132 ±	0.183 m	255.57 ± 1.35	E-12	(0.5%)	0.1641%	-0.000013	0.106827
$839.741 \hspace{0.2cm} \pm \hspace{0.2cm}$	199.057 μ	186.86 ± 1.03	E-12	(0.5%)	0.2639%	-0.000017	0.086977
1.315 \pm	0.300 m	296.53 ± 1.54	E-12	(0.5%)	0.2459%	-0.000011	0.061316
1.953 \pm	0.354 m	137.67 ± 0.80	E-12	(0.6%)	0.2445%	-0.000016	0.085429
1.084 \pm	0.153 m	252.61 ± 1.34	E-12	(0.5%)	0.4161%	-0.000015	0.047749
$4.243 \hspace{0.2cm} \pm \hspace{0.2cm}$	9.942 m	10.84 ± 0.32	E-12	(2.9%)	3.2139%	-0.000068	0.019897
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$38C1/39K$ $40Ar^* Vol ccNTP/g$ $-36.430 \pm 51.392 \text{ m}$ 564.78 ± 345.30 E-15(61.1%) $4.065 \pm 1.775 \text{ m}$ 6.19 ± 0.29 E-12(4.6%) $2.649 \pm 0.795 \text{ m}$ 26.16 ± 0.29 E-12(1.1%) $-1.105 \pm 0.796 \text{ m}$ 28.18 ± 0.32 E-12(0.1%) $1.870 \pm 0.511 \text{ m}$ 64.13 ± 0.52 E-12(0.8%) $1.680 \pm 0.475 \text{ m}$ 48.89 ± 0.44 E-12(0.9%) $623.525 \pm 616.942 \mu$ 50.63 ± 0.38 E-12(0.7%) $1.572 \pm 0.250 \text{ m}$ 157.30 ± 0.86 E-12(0.5%) $1.107 \pm 0.285 \text{ m}$ 320.09 ± 1.69 E-12(0.6%) $1.133 \pm 0.150 \text{ m}$ 887.71 ± 5.13 E-12(0.6%) $1.132 \pm 0.183 \text{ m}$ 255.57 ± 1.35 E-12(0.5%) $1.315 \pm 0.300 \text{ m}$ 296.53 ± 1.54 E-12(0.5%) $1.953 \pm 0.354 \text{ m}$ 137.67 ± 0.80 E-12(0.6%) $1.084 \pm 0.153 \text{ m}$ 252.61 ± 1.34 E-12(0.5%) $4.243 \pm 9.942 \text{ m}$ 10.84 ± 0.32 E-12(0.5%)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

0.324 Ma	Wt. Mean Age =	$71.69\pm$	6.11 Ma (115.42)					
$7.853\pm$	0.017	Total 39K Vol	= 3.9674E-0010 ccNTP/g					
		Total 40Ar* Vol =	$3.115 \pm 0.007 \text{ E-9}$					
631.60 ± 1199.5	8	Total Atm 40Ar Vol = 4.7610E-0011 ccNTP/g						
00005094 ±0.000	000437	Corr 36/40 & 39/40 ratios =-0.592865						
00211368 ±0.000	017242	Corr 36/40 & 37/40 rat	tios = -0.018921					
2542998 ±0.000	013626	Corr 37/40 & 39/40 ratios =0.009843						
0.137 E-2		$38C1/39K = 1.209 \pm 0.078 \text{ E-3}$						
3.092 ± 0.252 E	-2	Cl/K = 2	$2.540 \pm 0.163 \text{ E-4}$					
		F2 = 1.145 E-2						
	0.324 Ma $7.853 \pm$ 631.60 ± 1199.5 00005094 ± 0.000 00211368 ± 0.000 12542998 ± 0.000 0.137 E-2 $3.092 \pm 0.252 \text{ E}$	0.324 Ma Wt. Mean Age = 7.853 ± 0.017 631.60 ± 1199.58 00005094 ± 0.00000437 00211368 ± 0.00017242 12542998 ± 0.00013626 0.137 E-2 3.092 ± 0.252 E-2	0.324 MaWt. Mean Age = $71.69 \pm$ $7.853 \pm$ 0.017 Total 39K VolTotal 40Ar* Vol =Total 40Ar* Vol = 631.60 ± 1199.58 Total Atm 40Ar Vol = 00005094 ± 0.00000437 Corr 36/40 & 39/40 rat 00211368 ± 0.00017242 Corr 36/40 & 37/40 rat 12542998 ± 0.00013626 Corr 37/40 & 39/40 rat 0.137 E-2 $38Cl / 39K = 1.209 \pm 0.000 \pm 0.0000 \pm 0.0000000000000000$					

DP12-105 P63-055 muscovite

Fract	tions:													
No	Name				Temp	Cum 39	К		Age			40Ar* / 3	39K	
1	55-01	1.5	W	-73	1	0.0166	9	87.130	±	3.957	Ma	24.165	±	1.12
2	55-02	1.5	W	-73	2	0.1987	2	77.058	±	0.438	Ma	21.312	±	0.12
3	55-03	1.6	W	-73	3	0.3740	2	78.252	±	0.529	Ma	21.649	±	0.15
4	55-04	1.6	W	-73	4	0.5368	5	81.691	±	0.785	Ma	22.622	±	0.22
5	55-05	1.7	W	-73	5	0.6244	3	83.486	±	1.473	Ma	23.131	±	0.42
6	55-06	1.8	W	-73	6	0.6691	2	85.227	±	2.030	Ma	23.625	±	0.58
7	55-07	1.7	W	-7	7	0.7830	4	86.264	±	0.695	Ma	23.919	±	0.20
8	55-08	1.7	W	-7	8	0.8066	8	87.097	±	3.661	Ma	24.156	±	1.04
9	55-09	2.6	W	20kH	9	0.9989	9	96.543	±	0.373	Ma	26.846	±	0.11
10	55-10	5.0	W	20kH	10	1.0000	0 1	35.325	±	64.189	Ma	38.041	± 1	8.73
No	Name			(Cum 368		40Ar/3	66Ar			40ArAcc/g	37Ca / 39	9K	
1	55-01	1.5W	-73		0.02335	ϵ	$5960.73 \pm$	7	161.8	1	2.1E-0013	-17.3	$347 \pm$	37.650 m
2	55-02	1.5W	-73		0.32646	5	233.92±		459.6	7	2.8E-0012	24.	$130 \pm$	3.557 m
3	55-03	1.6W	-73		0.71971	4	019.43 ±		322.6	0	3.6E-0012	42.4	492 ±	3.575 m
4	55-04	1.6W	-73		0.80298	17	$364.92 \pm$	9	313.32	2	7.7E-0013	20.	$864 \pm$	8.164 m
5	55-05	1.7W	-73		0.77578	-284	443.56±	47	867.44	4 -2	2.5E-0013	-0.2	292 ±	31.895 m
6	55-06	1.8W	-73		0.76775	-504	423.72 ±	203	430.89) _'	7.4E-0014	-12.0)58 ±	32.053 m
7	55-07	1.7W	-7		0.85992	11	703.16±	3	364.50	6	8.5E-0013	48.	$877 \pm$	4.890 m
8	55-08	1.7W	-7		0.87923	11	$708.22 \pm$	19	178.54	1	1.8E-0013	168.0	$088 \pm$	24.120 m
9	55-09	2.6W	20kF	ł	0 96424	23	728 80 +	6	221 6	7	7 8E-0013	138.8	863 +	3 659 m
10	55-10	5.0W	20kH	I	1.00000	23 7	10.98 ±	4	87.04	,	3.3E-0013	1.	.632 ±	0.710
No 1	38CL 7	/ 39K .087	±	6.760	m	40Ar 4.84 ±	•* Vol ccN 0.22	TP/g E-12	(4.6%)	Atm Cont 4.2452%	$\mathbf{t} \mathbf{F1} \mathbf{F2}$	0.000012	0.001326
2	3	.328	±	1.218	m	46.59 ±	0.34	E-12	(0.7%)	5.6459%)	-0.000017	0.001543
3	3	.110	±	0.916	m	45.58 ±	0.37	E-12	(0.8%)	7.3518%)	-0.000030	0.002008
4	2	.057	±	1.147	m	44.24 ±	0.47	E-12	(1.1%)	1.7017%)	-0.000015	0.004365
5	2	.034	±	2.280	m	$24.33 \pm$	0.44	E-12) (1.8%)	-1.0389%)	0.000000	0.000102
6	3	.406	±	3.544	m	$12.68 \pm$	0.31	E-12	(2.4%)	-0.5860%	,)	0.000009	0.007190
7	2	.282	±	1.176	m	32.73 \pm	0.30	E-12	(0.9%)	2.5250%)	-0.000035	0.006436
8	2	.350	±	14.405	m	$6.86 \pm$	0.29	E-12	(4.3%)	2.5239%)	-0.000120	0.021590
9	158	.221	±	701.656	μ	$62.01 \pm$	0.37	E-12	(0.6%)	1.2453%)	-0.000099	0.032661
10	0	.357	±	107.991	m	462.41 ±	225.45	E-15	(48.8%)	41.5623%)	-0.001164	0.003796
Integ	rated R	esult	s:											

Age = 84.224	\pm 0.670 Ma	Wt. Mean Age =	85.64 ± 35.85 Ma	(162.34)
40Ar* / 39K =	$23.340 \pm$	0.094	Total 39K Vol	= 1.2011E-0011 ccNTP/g
			Total 40Ar* Vol =	$2.803 \pm 0.011 \text{ E-10}$
(40Ar / 36Ar)sam	= 9301.72	2 ± 940.40	Total Atm 40 Ar Vol = 9	9.1978E-0012 ccNTP/g
(36Ar / 40Ar)sam	$= 0.00010751 \pm 0.0$	0001513	Corr 36/40 & 39/40 ra	tios = -0.653114
(37Ar / 40Ar)sam	$= 0.00216889 \pm 0.0$	0015788	Corr 36/40 & 37/40 ra	tios =-0.033592
(39Ar / 40Ar)sam	$= 0.04148381 \pm 0.0$	0014186	Corr 37/40 & 39/40 ra	tios =0.040995
37Ca / 39K = 5.22	$28\pm0.380\text{ E-2}$		$38C1/39K = 2.281 \pm 0$.593 E-3
Ca / K =	$9.593 \pm 0.698 \ \text{E-2}$		Cl/K = 4.790) ± 1.245 E-4
F1 = -3.729 E-5			F2 = 5.568 E-3	

DP12-110 P59-081muscovite

No		Name	e	Те	mp Cun	n 39K				A	ge	40A	ur* /	39K		
1	81-01	1.6W	16-J	0	0.00	140	91.	050	±	35.736	Ma	10.073	±		4.05	
2	81-02	1.5W	16-J	0	0.00	900	83.	819	±	5.497	Ma	9.255	±		0.62	
3	81-03	1.8W	16-J	0	0.05	824	85.	338	±	0.818	Ma	9.426	±		0.09	
4	81-04	1.7W	16-J	0	0.09	271	113.0	673	±	1.219	Ma	12.656	±		0.14	
5	81-05	1.8W	16-J	0	0.11	267	117.	320	±	1.968	Ma	13.076	±		0.23	
6	81-06	1.9W	16-J	0	0.16	214	125.2	257	±	0.987	Ma	13.991	±		0.11	
7	81-07	2.0W	16-J	0	0.21	174	133.9	925	±	1.300	Ma	14.996	±		0.15	
8	81-08	3.5W	16-J	0	0.26	342	161.0	077	±	1.187	Ma	18.174	±		0.14	
9	81-09	4.5W	20kh	0	0.49	272	176.2	214	±	0.540	Ma	19.967	±		0.06	
10	81-10	4.5W	20kH	0	0.66	365	182.	753	±	0.684	Ma	20.746	±		0.08	
11	81-11	4.5W	18-J	0	0.75	791	190.4	451	±	0.847	Ma	21.667	±		0.10	
12	81-12	4.5W	20kH	0	0.78	601	189.3	824	±	2.006	Ma	21.592	±		0.24	
13	81-13	4.5W	20kH	0	0.88	984	192.4	426	±	0.696	Ma	21.904	±		0.08	
14	81-14	4.5W	20kH	0	0.93	885	200.0	051	±	1.590	Ma	22.821	±		0.19	
15	81-15	4.5W	20kH	0	0.98	523	223.0	022	±	1.565	Ma	25.607	±		0.19	
16	81-16	4.5W	20kH	0	1.00	000	279.0	669	±	2.964	Ma	32.631	±		0.37	
							_,,,,									
No		Name		Cum 36	9	404	r / 36 A	r			40 Ar Ac	c/a		370	a / 30K	
1	81-01	1 6W	16-I	0.00394		1123 7	1, 501 16 +	1	257	46	3 0F-0013	-	1 067	+	0.414	
2	81_02	1.5W	16 J	0.00000		587.7	70 ±	1	237.	48	4 3E-0012	-64	1 904	+	93 434	m
3	81-03	1.5 W	16 J	0.05760		7562.0	0 ±	1	600	.40 64	1.1E-0012	0-	9 522	+	20.698	m
4	81-04	1.0 W	16 J	0.07723		38908.4	<u> </u>	53	000.	78	2.0E-0013	-3	5.033	+	33 410	m
5	81-05	1.7 W	16 J	0.09049	1	4863 5		1	030. 247	70 52	1.0E-0012	-64	1 239	+	40.060	m
6	81-06	1.0 W	16 J	0.11248		7591.9		1	217. 245	91	1.0E 0012	0	5 399	+	16 523	m
7	81-07	2.0W	16 J	0.12306		16601.8	0 +	9	213. 001	51	8 1E-0013	2	5 381	+	19 968	m
8	81-08	3.5W	16 J	0.12000		6168 5	5 +	,	872	49	2 8E-0012	3	0.838	+	15 918	m
9	81-09	4 5W	20kh	0.21042		21415.6	0 +	2	560	10	3.8E-0012	5	9 1 8 8	+	3 260	m
10	81-10	4.5W	20kH	0.33954		6664.2	± 22 \pm	-	297	.66	9.8E-0012	2	6.215	±	3.880	m
11	81-11	4.5W	18-J	0.38994		9691.0)2 ±	1	150.	83	3.8E-0012		5.054	±	13.914	m
12	81-12	4.5W	20kH	0.39063	2	04039.5	- 5 ±	14624	47.0	0	5.3E-0014		4.710	±	32.510	m
13	81-13	4.5W	20kH	0.40455		38183.3	4 ±	16	077.	95	1.1E-0012		7.704	±	7.936	m
14	81-14	4.5W	20kH	0.41386		28144.3	9 ±	19	479.	68	7.1E-0013	1	0.623	±	21.994	m
15	81-15	4.5W	20kH	0.64936		1465.1	6 ±		40	35	1.8E-0011	2	0.135	±	23.377	m
16	81-16	4 5W	20kH	1 00000	1	614 1			.0	81	2.7E-0011	10	7 790	+	36 508	m
10	01 10	110 11		1100000		01	-		Ū		2., 2 0011	10			000000	
No		38C1/	39K		4	0Ar* Vo	ol ccNT	Ρ/σ			Atm C	ont	1	F1		F2
1	-81.5	543 +	48.062	m 8	841 16	+ 336	88	E-15	(4	0.0%)	26 2956	%	0.00	0761	0 0243	46
2	8	880 +	26.132	m	4 21	+ () 28	E-12	(6 7%)	50 2806	%	0.000	0046	0.0005	27
3	1	156 +	4 252	m	27 77	+ () 29	E-12	(1.0%)	3 9077	70/0	-0.000	007	0.0020	40
4	0	075 +	3 395	m	26.11	+ () 30	E-12	(1.0%)	0 7595	5%	0.000	0076	0.0020	63
5	_3 3	376 +	1 888	m	15.62	+ ().30	E-12	(1.2%)	6.0758	8%	0.000	0046	0.0062	64
6	0	292 +	1.507	m	41.42	+ () 36	E_12	(0.9%)	3 8923	30⁄2	_0.000	004	0.0002	87
7	0. 2	767 +	1.357	m	44 51	+ () 49	E_{-12}	(1.1%	1 7790)%	-0.000	018	0.0007	34
8	933 (066 +	973 901		56 21	+ () 40	E_{-12}	(0.9%)	4 7904	10/2	-0.000	022	0.0070	55
0	1	663 ±	0.624	μ m ´	274.00	± (1.47 I	E = 12	(0.5%	1 3708	r70 20/2	-0.000	022	0.0027	01
) 10	1.	005 ±	0.520	m ²		- I + 1	117	E-12 F-12	(0.570)	1.3790 1 /2/1	%	_0.000	010	0.0027	25
11	1. ว	318 ±	0.520	m ¹	12.22	- I + ((1,1)	E-12 F-12	(0.6%	3 0/02	0/0	_0.000	004	0.0022	2 <i>5</i> 08
11 12	ے۔ 11 ہے	-510 ± 447 ±	017 5/18		36.37	- (+ () 42 1	E_{12}	(1 20%)	0 1//92	20/2	_0.000	004	0.0000	61
12	4/6	182 –	558 0/7	μ μ ¹	136.00	- (+ () 83 I	E-12 F-12	(0.6%	0.1440)%	_0.000	005	0.0122	04
14	1 I	$102 \pm 036 \pm$	1 353	μ m	66.02	- (+ () 60 1	E-12 F-12	(0.0%)	1 0/00)%	_0.000	002	0.0037	01
14	1. 0.4	5050 ±	1.555	m	71 00	- (+ () 61	E-12 E-12	((0.270)	20 1694	.0/0	-0.000	014	0.0030	<u>4</u> 2
15	-0	502 J	1.700 2.180	m	11.00 28.81	(() 32	E-12 E-12		1 10/)	20.1004 AQ 1172	0/2	-0.000	014	0.0002	רד 17
10	1.	$302 \pm$	5.100	111	20.04	± (L-1Z	C	1.170)	40.1140	/0	-0.000	0//	0.0002	1 /

Age	$= 171.920 \pm$	0.786 Ma	Wt. Mean Age = 163.44	± 373.29 Ma (144	44)			
40Ar*	/ 39K =	$19.457 \pm$	0.048	Total 39K Vol	= 5.9845E-0011 ccNTP/g			
				Total 40Ar* Vol =	$1.164 \pm 0.003 \text{ E-9}$			
(40Ar	/ 36Ar)sam =	4807.50 ±	= 96.53	Total Atm 40Ar Vol	= 7.6259E-0011 ccNTP/g			
(36Ar	/ 40 Ar)sam = 0.0	00020801 ± 0.000	000573	Corr 36/40 & 39/40 ratios =-0.522703				
(37Ar	/ 40 Ar) sam = 0.0	00048835 ± 0.000)17410	Corr 36/40 & 37/40 ratios =-0.010849				
(39Ar	/ 40 Ar)sam = 0.0	04823608 ±0.000	007750	Corr 37/40 & 39/40 ratios =0.001270				
37Ca /	39K = 1.0	$012 \pm 0.361 \text{ E-2}$		38C1 / 39K =	1.051 ± 0.403 E-3			
C	Ca / K =	1.858 ± 0.662 E	-2	Cl / K =	$2.206 \pm 0.847 \text{ E-4}$			
F1 = -7	7.222 E-6			F2 = 6.483 E-4				

DP12-112 P59-068 muscovite

	No Name		Temp	Cum 39K	Age	e		40Ar*	/	39K
1	68-01 1.5W	21-D	1	0.00181	$225.119 ~\pm$	5.704	Ma	25.863	±	0.70
2	68-02 1.5W	21-D	2	0.00283	$366.143~\pm$	9.896	Ma	43.788	±	1.31
3	68-03 1.5W	21-D	3	0.06979	$138.329~\pm$	0.228	Ma	15.508	±	0.03
4	68-04 1.6W	21-D	4	0.09004	$110.923~\pm$	0.572	Ma	12.341	±	0.07
5	68-05 1.7W	14-J	5	0.09535	$120.560~\pm$	1.985	Ma	13.449	±	0.23
6	68-06 1.8W	14-J	6	0.22662	$124.069~\pm$	0.203	Ma	13.854	±	0.02
7	68-07 1.9W	14-J	7	0.24929	$123.132~\pm$	0.555	Ma	13.746	±	0.06
8	68-08 1.9W	14 - J	8	0.28170	$122.627 \pm$	0.463	Ma	13.687	±	0.05
9	68-09 2.0W	14 - J	9	0.31806	$123.651 \pm$	0.416	Ma	13.806	±	0.05
10	68-10 3.5W	flas	10	0.38155	$143.869~\pm$	0.480	Ma	16.154	±	0.06
11	68-11 4.5W	20kH	11	0.49860	$140.201~\pm$	0.476	Ma	15.726	±	0.06
12	68-12 4.5W	20kH	12	0.59537	$140.006~\pm$	0.303	Ma	15.704	±	0.04
13	68-13 4.5W	10-6	13	0.83222	$137.744~\pm$	0.246	Ma	15.440	±	0.03
14	68-14 4.5W	20kH	14	0.88084	$135.922 \pm$	0.382	Ma	15.228	±	0.04
15	68-15 4.5W	20kH	15	0.92234	$137.989 \pm$	0.368	Ma	15.469	±	0.04
16	68-16 4.5W	20kh	16	0.95319	$137.110 \pm$	0.472	Ma	15.366	±	0.05
17	68-17 4.5W	20kH	17	0.99993	$141.852 \pm$	0.351	Ma	15.919	±	0.04
18	68-18 4.5W	20kH	18	1.00000	$158.621 \pm$	120.693	Ma	17.885	±	14.22
No	Name	Cu	ım 36S	40Ar / 3	6Ar		40ArAcc/g	5	370	Ca / 39K
1	68-01 1.5W 21-D	0	0.22489	544.22 =	⊧ 11	.95	1.8E-0011	-147.50)8 ±	541.088 m
2	68-02 1.5W 21-D	0	.32114	851.39 =	= 45	.22	7.9E-0012	91.0	77 ±	53.608 m
3	68-03 1.5W 21-D	0	.50854	6932.83 ±	213	.85	1.5E-0011	10.2	$54 \pm$	1.282 m
4	68-04 1.6W 21-D	0	.53600	11194.79 ±	1750	.50	2.2E-0012	28.7	$09 \pm$	11.705 m
5	68-05 1.7W 14-J	0	.51965	$\textbf{-4936.49} \pm$	1450.	.80 -1	1.3E-0012	-261.83	$5 \pm$	165.571 m
6	68-06 1.8W 14-J	0	.59430	$29474.75 \pm$	2324.	34	6.1E-0012	1.4	$39 \pm$	5.326 m
7	68-07 1.9W 14-J	0	.59244	-200404.49 \pm	570018.	14 -	1.5E-0013	5.8	$58 \pm$	12.619 m
8	68-08 1.9W 14-J	0	.60945	$31544.31 \pm$	10137.	87	1.4E-0012	7.1	$97 \pm$	8.420 m
9	68-09 2.0W 14-J	0	.64632	$16602.27\pm$	2273.	53	3.0E-0012	12.1	27 ±	7.558 m
10	68-10 3.5W flas	0	.70413	$21544.32 \pm$	2080.	.64	4.7E-0012	12.7	$48 \pm$	4.738 m
11	68-11 4.5W 20kH	0	.75862	$40751.50 \pm$	19311.	29	4.5E-0012	15.0	$44 \pm$	2.844 m
12	68-12 4.5W 20kH	0	.84390	$21638.87 \pm$	1955.	.13	7.0E-0012	16.2	31 ±	1.441 m
13	68-13 4.5W 10-6	0	.92007	$57798.72 \pm$	11652.	66	6.2E-0012	8.7	$58 \pm$	1.546 m
14	68-14 4.5W 20kH	0	.94679	33483.64 ±	7412	.60	2.2E-0012	14.4	87 ±	4.486 m
15	68-15 4.5W 20kH	0	.97081	32294.72 ±	7623	.08	2.0E-0012	14.1	25 ±	5.202 m
16	68-16 4.5W 20kh	0	.98550	38947.29 ±	13805.	49	1.2E-0012	21.0	69 ±	7.468 m
17	68-17 4.5W 20kH	0	.98775	$396788.55 \pm$	660101.	10	1.8E-0013	7.2	$80 \pm$	2.357 m
18	68-18 4.5W 20kH	1.0	00000	414.39 ±	131.2	29 1	.0E-0012	1.13	$9\pm$	2.509

DP12-112 P59-068 muscovite

No	38Cl / 39K				40Ar*	Vol ccNT	P/g	Atm Cont F1	F2	
1	-4.595	±	30.747	m	15.46 \pm	0.41	E-12 (2.7%	54.2979%	0.000105	0.000291
2	16.135	±	5.094	m	$14.79 \hspace{0.2cm} \pm \hspace{0.2cm}$	0.42	E-12 (2.9%	b) 34.7080%	-0.000065	0.000258
3	1.982	±	0.266	m	$343.88 \hspace{0.2cm} \pm \hspace{0.2cm}$	1.79	E-12 (0.5%	b) 4.2623%	-0.000007	0.001217
4	1.083	±	0.746	m	82.74 \pm	0.56	E-12 (0.7%	b) 2.6396%	-0.000020	0.007014
5	3.875	±	1.943	m	$23.64 \hspace{0.2cm} \pm \hspace{0.2cm}$	0.41	E-12 (1.7%	b) -5.9860%	0.000187	0.027854
6	1.774	±	0.286	m	$602.23 \hspace{0.2cm} \pm \hspace{0.2cm}$	3.11	E-12 (0.5%	b) 1.0026%	-0.000001	0.000845
7	2.217	±	0.746	m	103.16 \pm	0.68	E-12 (0.7%	b) -0.1475%	-0.000004	0.024489
8	913.685	±	439.686	μ	$146.90 \hspace{0.2cm} \pm \hspace{0.2cm}$	0.87	E-12 (0.6%	b) 0.9368%	-0.000005	0.004565
9	1.657	±	0.580	m	166.23 \pm	0.95	E-12 (0.6%	b) 1.7799%	-0.000009	0.003978
10	1.701	±	0.310	m	$339.64 \hspace{0.2cm} \pm \hspace{0.2cm}$	1.89	E-12 (0.6%	b) 1.3716%	-0.000009	0.004654
11	961.417	±	241.498	μ	$609.51 \hspace{0.2cm} \pm \hspace{0.2cm}$	3.72	E-12 (0.6%	b) 0.7251%	-0.000011	0.010687
12	1.494	±	0.248	m	503.25 \pm	2.63	E-12 (0.5%	b) 1.3656%	-0.000012	0.006114
13	1.039	±	0.137	m	1.21 \pm	0.01	E-9 (0.5%)	0.5113%	-0.000006	0.009025
14	1.044	±	0.351	m	$245.16 \hspace{0.2cm} \pm \hspace{0.2cm}$	1.38	E-12 (0.6%	b) 0.8825%	-0.000010	0.008734
15	777.270	±	543.492	μ	$212.57 \hspace{0.2cm} \pm \hspace{0.2cm}$	1.18	E-12 (0.6%	b) 0.9150%	-0.000010	0.008088
16	924.607	±	442.054	μ	157.00 \pm	0.92	E-12 (0.6%	b) 0.7587%	-0.000015	0.014576
17	1.148	±	0.253	m	$246.39 \ \pm$	1.31	E-12 (0.5%	b) 0.0745%	-0.000005	0.048212
18	309.835	±	129.317	m	$402.62 \hspace{0.2cm} \pm \hspace{0.2cm}$	317.36	E-15 (78.8%)	71.3091%	-0.000813	0.001301

Age	$= 135.438 \pm$	0.596 Ma	Wt. Mean Age = 133.48	\pm 45.88 Ma (5	10.04)			
40Ar*	/ 39K =	$15.172 \pm$	0.029	Total 39K Vol	= 3.3113E-0010 ccNTP/g			
				Total 40Ar* Vol =	$= 5.024 \pm 0.009 \text{ E-9}$			
(40Ar	/ 36Ar)sam = 18	$466.37 \pm$	680.97	Total Atm 40Ar Vol = 8.1700E-0011 ccNTP/g				
(36Ar	/ 40Ar)sam = 0.0	00005415 ± 0.000	000280	Corr 36/40 & 39/4	40 ratios =-0.508074			
(37Ar	/ 40 Ar) sam = 0.0	00060150 ± 0.000	011341	Corr 36/40 & 37/40 ratios =-0.013494				
(39Ar	/ 40 Ar)sam = 0.0	06485726 ± 0.000	005254	Corr 37/40 & 39/40 ratios =0.001489				
37Ca /	$39K = 9.274 \pm$	1.749 E-3		38Cl / 39K = 1.35	$64 \pm 0.101 \text{ E-3}$			
C	a / K =	$1.702\pm0.321~\mathrm{E}$	-2	Cl / K =	$= 2.843 \pm 0.211$ E-4			
F1 = -	6.615 E-6			F2 = 3.087 E-3				

DP12-125 P59-080 muscovite Fractions:

No	Name		Cum 39K					Age	e		40Ar* / 39K				
1	80-01	1.5W	21-J	1	0.00163			21.809	\pm 41.383		Ma	2.367	±	4.52	
2	80-02	1.6W	21-J	2	0.00	-	60.240	±	235.881	Ma	-6.391	±	24	1.61	
3	80-03	1.7W	21-J	3	0.00	0.00642			±	11.470	Ma	4.911	±	1	.27
4	80-04	3.5W	21 - J	4	0.00	0.00937			±	18.568	Ma	7.116	±	2	2.08
5	80-05	4.4W	20kH	5	0.15	0.15108		$67.513 \pm$		0.470	Ma	7.420	±	().05
6	80-06	4.5W	20kH	6	0.26	0.26407		69.121	±	0.431	Ma	7.601	±	().05
7	80-07	4.5W	20kH	7	0.31	0.31340		70.765	±	1.028	Ma	7.785	±	().12
8	80-08	4.5W	30kh	8	0.49	087		71.151	±	0.385	Ma	7.828	±	().04
9	80-09	4.5W	20kH	9	0.54	511		69.407	±	1.051	Ma	7.633	±	().12
10	80-10	4.5W	20kH	10	0.57	113		68.396	±	1.914	Ma	7.519	±	().21
11	80-11	4.5W	20kH	11	0.99	572		72.871	±	0.197	Ma	8.021	±	().02
12	80-12	4.5W	20kH	27	1.00	000	1	74.525	±	15.533	Ma	19.766	±	1	.85
No		Name		Cum 36S			40Ar	/ 36Ar			40	ArAcc/g		37Ca / 3	39K
1	80-01	1.5W	21-J	0.07264		2	99.67±	:		8.07	1.5E-0011	47	$4.049 \pm$	514.885	m
2	80-02	1.6W	21-J	0.07827		2	271.90±	:		83.54	1.2E-0012	-	1.943 ±	5.458	
3	80-03	1.7W	21-J	0.10380	1	3	63.61±			21.60	5.3E-0012	5	3.696 ±	318.902	m
4	80-04	3.5W	21-J	0.10703		8	04.92±	:		403.68	6.7E-0013	-4	3.281 ±	476.336	m
5	80-05	4.4W	20kH	0.18292		13	81.56±	:		34.74	1.6E-0011	1	$0.042 \pm$	10.004	m
6	80-06	4.5W	20kH	0.19155		80	90.78±			1257.68	1.8E-0012		$8.761 \pm$	6.853	m
7	80-07	4.5W	20kH	0.19282		239	78.64±	-		27725.57	2.6E-0013	1	3.497 ±	10.834	m
8	80-08	4.5W	30kh	0.31730	1	11	70.21±	-		17.10	2.6E-0011	2	5.755 ±	3.893	m
9	80-09	4 5W	20kH	0.32154		79) 55 57+	_		3048 36	8 8E-0013	- 5	3 518 +	38 600	m
10	80-10	4 5W	20kH	0.32469		51	51 88+	-		2365 19	6.6E-0013	14	$5.916 \pm$	58 434	m
11	80-11	4 5W	20kH	0.52109		15	93 17+	_		14.81	4 3E-0011	2	3 502 +	3 747	m
12	80-12	4.5W	20kH	1.00000)	3	09.63±	:		1.37	9.7E-0011	4	4.687 ±	157.152	m
No		3801	/ 20K		40	۸*	Vol	ooNTI	D/a			tm Cont	F1		БJ
1	16	751 ⊥	25.646	m		/	05.83	E 15	/g	(100.0%)	ے 00 600	10⁄2	0.000338	0.000	105
1 2	40. 214	$.731 \pm 614 \pm$	252 212	m 111 2	03.26	⊥ 1 ⊥ 3	58 76	E-15		(190.970) (384.70%)	108 678	1 /0	-0.000338	0.000	620
2	-214.	$160 \pm$	235.512	m	1 22	 	0.32	E-13		(364.770)	100.070 81.268	1 /0 00/2	0.001380	0.000	170
3 1	-42.	$.100 \pm 747 \pm$	22.349	m	1.22	⊥ ⊥	0.32	E-12		(23.070)	36 711	70/2 70/2	-0.000038	0.000	836
- -	-24.	$0.020 \pm$	0.520	m	57.87	т Т	0.34	E-12	((29.170)	21 288	0%	0.000031	0.000	102
5	2.	.920 ±	0.520		17 27	±	0.77	E 12		(0.970)	21.500	20/	-0.000007	0.000	109
7	1.	.402 ⊥ 497 ⊥	1.040	111 m	47.27 21.14	±	0.37	E-12	((1.5%)	1 222	370 20/	-0.000000	0.002	+20
/ 0	0.	.+07 ⊥ 256 ⊥	0.282	111 m	76.46	±	0.52	E-12	((1.370)	25 251	970 90/	-0.000010	0.011	705
0	1.	.550 ±	2.007	111 m	22.70		0.34	E-12	((1.6%)	25.251	070 10/	-0.000018	0.000	765
9 10	2	.302 ±	2.097	111	10.77	-	0.30	E-12	((1.070)	5 725	4/0 00/	-0.000036		747 551
10		.322 ±	0.210	111	10.77	т ,	1.02	E-12	((2.070)	10 5 47	070	-0.000104	7 0.023	011
12	5.	.290 ±	11.379	m	4.66	±	0.43	E-12 E-12	(9.3%)	95.437	3%	-0.00001	2 0.000	044
Tertoe	uatad Da								·	· · ·					
Integ Age	= 71	.159 ±	0.378	3 Ma Wt.	Mean A	.ge =			71.4	47 ±	2.86	Ma (1	18.88)		
40Ar	* / 39K =		$7.829 \pm$	0.0	31	-			Tot	al 39K Vol	=	5.503	7E-0011 ccl	NTP/g	
									Tot	al 40Ar* Vo	- Ic	4.309±0).017 E-10	U	
$(40 \mathrm{Ar} / 36 \mathrm{Ar})$ sam = 900 10 + 5 27								Tot	al Atm 40A	r Vol = 2.075	1E-0010	ccNTP/g			
	(404)	0.0	0100000			,			0		20/40	0 40452	0		
(37.4 + 10.41) sam = 0.00214500 ± 0.00000/85									Corr $30/40 \approx 39/40$ ratios = -0.484520						
$(5 / \text{Ar} / 40 \text{Ar}) \text{sam} = 0.00214599 \pm 0.00038462$									Corr 36/40 & 37/40 ratios =-0.019545						
(39A)	r / 40Ar)s	sam = 0.0	8621041 ∃	±0.000185°	/0				Co	rr 37/40 & 1	39/40 ratios =	0.008483	3		
37Ca	/ 39K =	2.4	489 ± 0.44	6 E-2					380	Cl / 39K =	1.327 ±	0.282 E-	-3		
	Ca / K	=	4.568 ± 0.8	819 E-2					Cl /	K	= 2.787 =	± 0.592 E	-4		
F1 =	-1.776 E-	5							F2 =	= 5.271	E-4				