ESR 00-12

Quaternary Geology and Till Geochemistry, Wapiti Map Area (NTS 83L)

Alberta Energy and Utilities Board Alberta Geological Survey

ALBERTA ENERGY AND UTILITIES BOARD

Earth Sciences Report 2000-12: Quaternary Geology and Till Geochemistry, Wapiti Map Area (NTS 83L)

ISBN 0-7785-1494-3

Mark M. Fenton and John Pawlowicz Alberta Energy and Utilities Board Alberta Geological Survey 4th Floor, Twin Atria Building 4999 – 98th Avenue Edmonton, Alberta T6B 2X3

Published September 2001 by Alberta Energy and Utilities Board Alberta Geological Survey 4th Floor, Twin Atria Building 4999 – 98th Avenue Edmonton, Alberta T6B 2X3

Telephone: (780) 422-1927 (Main Office) (780) 422-3767 (Information Sales) Fax: (780) 422-1918 E-mail: EUB.AGS-Infosales@gov.ab.ca

Web site: www.ags.gov.ab.ca

Disclaimer

This document is protected by copyright and is provided for informational and educational purposes only. No unauthorized commercial reproduction or exploitation is allowed. Any use and interpretation is solely the responsibility of the purchaser. When using this data in publications or presentations, due acknowledgement is to be given to the EUB/AGS and authors.

The Alberta Energy and Utilities Board, Alberta Geological Survey (EUB/AGS) and its employees make no warranty, guarantee, representation, expressed or implied, or assume any legal liability regarding the correctness, accuracy, completeness, reliability, usefulness or fitness for purpose of any information, apparatus, product or process disclosed on this product or that the information disclosed will not infringe any patent, copyright, trade secret or any other proprietary or intellectual property right of any person.

Any references made in this publication to any specific commercial product or service by trade name, trade mark, manufacturer or otherwise, does not constitute or imply the endorsement, recommendation or favouring of the EUB/AGS.

If this product is one of the EUB/AGS Special Report Series, the information is provided as received from the author and has not been edited for conformity to the EUB/AGS standards.

Acknowledgements

The authors wish to thank Pat Longpre who provided assistance during the 1996 summer field program, and I. Ranger and L. Jacula who assisted in the 1997 summer field season.

D. Goulet performed the lab analyses (texture, Chittick, and initial geochemical sample prep). Thanks also to L. Andriashek and J. Boon who reviewed this paper and B. Simmonds who helped with the editing and typing.

The surficial geology map was compiled by Andriashek (1983) based on unpublished work done by Bayrock and Twardy. D. Chao transformed the original draft map into the ARCINFO document used to print the enclosed map.

Contents

Acknowledgements	ii
Abstract	viii
1 Introduction	1
1.1 Study Location and Objectives	1
1.2 Sample Collection	3
1.3 Physiography	3
2 Surficial Geology	6
2.1 Map Units	6
2.2 Ice Flow and History	6
3 Analytical Methods	11
4 Analytical Results	14
4.1 Regional Geochemistry	14
Ag, Silver	14
As, Arsenic	14
Au, Gold	14
Ba, Barium	14
Br, Bromine	17
Cd, Cadmium	17
Ce, Cerium	17
Co, Cobalt	17
Cr, Chromium	18
Cs, Cesium	18
Cu, Copper	18
Eu, Europium	18
Fe, Iron	18
HF, Hafnium	19
Ir, Iridium	19
La, Lanthanum	19
Li, Lithium	19
Lu, Lutetium	19
Mg, Magnesium	20
Mn, Manganese	20
Mo, Molybdenum,	20
Na, Sodium	20
Ni, Nickel	21
Pb, Lead	21
Rb, Rubidium	21
Sb, Antimony	21
Sc, Scandium	21
Se, Selenium	22
Sm, Samarium	22
Sn, Tin	22
Ta, Tantalum	22
Tb, Terbium	22
Te, Tellurium	22
Th, Thorium	22

II Uranium	23
	23
v, vanadium	23
W, Tungsten	23
Yb, Ytterbium	23
Zn, Zinc	24
Zr, Zirconium	24
4.2 Regional Carbonate Content	24
4.2.1 Total Carbonate	24
4.2.2 Dolomite	24
4.2.3 Calcite	25
4.2.4 Calcite:Dolomite Ratio	25
4.3 Regional Texture	25
4.3.1 Sand (2.00 to 0.063 mm)	25
4.3.2 Clay (< 0.004 mm)	25
4.3.3 1 to 2 mm Fraction	26
4.4 Regional Coarse-Clast Composition	26
4.5 Geochemical, Carbonate, and Textural Relationships	26
4.5.1 Interelement Associations	26
Cesium, Lanthanum, Samarium, and Thorium	26
Chromium and Scandium	27
Cobalt, Copper, and Nickel	27
4.5.2 Textural and Carbonate Associations	27
Summary	
References	

Figures

1.	Location of the map area (NTS 83L).	1
2.	Geographical features in the Wapiti area	2
3.	Three dimensional view of Wapiti map area.	4
4.	Pysiographic map, Wapiti map area. (from Twardy and Corns, 1980 and Pettapiece, 1986)	5
5.	Preliminary subdivision of map area based on course clast lithology	7
6.	Three dimensional map showing approximate eastern limit of the Cordillearan/Rocky	
	Mountain tills (based on surficial geology map 239)	9
7.	Location of geochemical samples.	10
8.	Concentration of Ag in ppm by AA for sites with values \geq 75th percentile	30
9.	Concentration of As in ppm by INNA for sites with values ≥75th percentile	31
10.	. Concentration of Au in ppb by INNA for sites with values \geq 75th percentile.	32
11.	Concentration of Ba in ppm by INNA for sites with values \geq 75th percentile	33
12.	. Concentration of bromine in ppm by INNA for sites with values \geq 75th percentile	34
13.	. Concentration of Cd in ppm by AA for sites with values \geq 75th percentile	35
14.	. Concentration of Ce in ppm by INNA for sites with values \geq 75th percentile	36
15.	. Concentration of Co in ppm by AA for sites with values ≥ 75 th percentile	37
16.	. Concentration of Cr in ppm by INNA for sites with values \geq 75th percentile	38
17.	. Concentration of Cs in ppm by INNA for sites with values \geq 75th percentile	39
18.	. Concentration of Cu in ppm by AA for sites with values >75 th percentile	40
19.	. Concentration of Eu in ppm by INNA for sites with values >75th percentile	41
20.	. Concentration of Fe in % by AA for sites with values \geq 75th percentile	42
21.	. Hafnium concentration (ppm by NA) for sites with values ≥ 75 th percentile	43
22.	. Concentration of La in ppm by INNA for sites with values \geq 75th percentile	44
23.	. Concentration of Li in ppm by INNA for sites with values \geq 75th percentile.	45
24.	. Concentration of Lu in ppm by INNA for sites with values >75th percentile	46
25.	. Concentration of Mn in ppm by AA for sites with values ≥ 75 th percentile	47
26.	. Concentration of Mo in ppm by AA for sites with values \geq 75th percentile	48
27.	. Concentration of Na in % by INNA for sites with values \geq 75th percentile	49
28.	. Concentration of Ni in ppm by AA for sites with values \geq 75th percentile.	50
29.	. Concentration of Pb in ppm by AA for sites with values >75th percentile.	51
30.	. Concentration of Rb in ppm by INNA for sites with values >75th percentile	52
31.	. Concentration of Sb in ppm by INNA for sites with values >75th percentile	53
32.	. Concentration of Sc in ppm by INNA for sites with values >75th percentile	54
33.	. Concentration of Sm in ppm by INNA for sites with values >75th percentile	55
34.	. Concentration of Ta in ppm by INNA for sites with values >75th percentile	56
35.	. Concentration of Tb in ppm by INNA for sites with values >75th percentile	57
36.	. Concentration of Th in ppm by INNA for sites with values >75th percentile	58
37.	Concentration of U in ppm by INNA for sites with values >75th percentile	59
38.	Concentration of V in ppm by AA for sites with values \geq 75th percentile.	60
39	Concentration of W in ppm by INNA for sites with values >75 th percentile	61
40	Concentration of Y in ppm by INNA for sites with values >75 th percentile	62
41	Concentration of Zn in ppm by AA for sites with values >75 th percentile	63
42	Concentration of Zr in ppm by INNA for sites with values >75 th percentile	
43	Total carbonate content (in % of the <0.063mm fraction) for all samples	5
44	Total carbonate content (in % of the <0.063 mm fraction) for an samples, with concentrations	
.7.	>75th percentile	66

45.	Dolomite content (in % of the <0.063mm fraction) for all samples	67
46.	Dolomite content (in % of the <0.063mm fraction) for samples with concentrations	
	≥75th percentile.	68
47.	Calcite content (in % of the <0.063mm fraction) for all samples	69
48.	Calcite content (in % of the <0.063mm fraction) for samples with concentrations	
	≥75th percentile.	70
49.	Calcite: dolomite ratio for alll samples (<0.063mm fraction).	71
50.	Calcite: dolomite ratio for samples with ratios ≥ 0.7 (<0.063mm fraction).	72
51.	Calcite: dolomite ratio for samples with ratios ≥ 10 (<0.063mm fraction).	73
52.	Sand content (in % of the <0.063mm fraction) for all samples	74
53.	Sand content (in % of the <0.063mm fraction) for samples with concentrations	
	≥75th percentile.	75
54.	Clay content (in % of the <0.004mm fraction) for all samples.	76
55.	Clay content (in % of the >0.004mm fraction) for samples with concentrations	
	≥75th percentile.	77
56.	Coarse sand content (in % of the 1-2 mm fraction) for all samples.	78
57.	Coarse sand content (percent of the 1-2 mm fraction) for samples with concentrations	
	>75th percentile.	79
58.	Scatter plots showing relationship between Ce, La, Sm and Th. Axis labels indicate	
	the element (Th), the analytical method (NA=INNA) and concentration (ppm)	80
59.	Scatter plots showing correlation between Rb and Ce, Cs, La, Sm and Th. Axis labels	
	indicate the element, the analytical method and concentration.	81
60.	Scatter plots showing correlation between Pb and Ce, La, Sm and Th. Axis labels	
	indicate the element, the analytical method and concentration.	82
61.	Concentrations of Ce in ppm by INNA for all samples	83
62.	Concentrations of La in ppm by INNA for all samples.	84
63.	Concentrations of Sm in ppm by INNA for all samples.	85
64.	Concentrations of Th in ppm by INNA for all samples.	86
65.	Concentrations of Cs in ppm by INNA for all samples.	87
66.	Concentrations of Rb in ppm by INNA for all samples	88
67.	Scatter plots showing relationship between Cr, Sc and Ni. Axis labels indicate the	
	element (Ni), the analytical method (NA=INNA or AA) and concentration (ppm).	89
68.	Concentrations of Cr in ppm by INNA for all samples.	90
69.	Concentrations of SC in ppm by NA for all samples	91
70.	Distribution of samples with higher concentrations of: Group 1 (Ce, La, SM and Th),	
	Group 2 (Cr and Sc), and Group 3 (Co, Cu and Ni) elements.	92
71.	Scatter plots showing correlations among Co, Cu, Ni and Sc. Axis lables indicate the element,	
	the analytical method and concentration.	93
72.	Concentrations of Co in ppm by AA for all samples.	94
73.	Concentrations of Cu in ppm by AA for all samples.	95
74.	Concentrations of Ni in ppm by AA for all samples.	96
75.	Scatter plots showing correlation between clay (<0.004 mm) content and Rb, Cs, Ce, La,	
	Th and Sm concentrations	97
76.	Scatter plots showing correlations: between clay (<0.004 mm) content and Pb concentration.	
	and between slit (0.063 mm to 0.004 mm) content and Co, Cu, Ni and Fe concentrations	98

Tables

1	Analytical methods and detection limits, for till matrix geochemistry	13
2.	Statistical summary of analytical data from surface samples of all sediment types.	15
3.	Statistical summary of analytical data from surface samples of till and diamicton only	16

Appendices

•

1.	Part 1. Geochemical and related data from surface samples discussed in this report	100
	Part 2. Geochemical and related data from surface samples discussed in this report	101
	Part 3. Geochemical and related data from surface samples discussed in this report	102

Abstract

This report provides the current data and interpretations concerning the surficial geology and till geochemistry of the Wapiti map area (NTS 83L). Work on the project was suspended during the second year due to reprioritizing of staff effort.

The area encompasses the transition zone from the Interior Plains to the Eastern Cordillera, with elevation rising from about 525 m (1720 ft) in the northeast to 2455 m (8050 ft) in the southwest. Four physiographic regions can be defined: the Wapiti Plains, the Alberta Plateau Benchlands, the Rocky Mountain Foothills, and the Rocky Mountains.

The surficial geology is shown on a 1:250 000 scale map, compiled by Andriashek (1983) based on unpublished work by A. Twardy and L. Bayrock. The main surficial materials are till, glaciolacustrine sediment, weathered bedrock, and, to a lesser extent, glaciofluvial sediment. The till includes units deposited by Laurentide (Continental), Cordilleran, and Rocky Mountain ice sheets.

The ice-flow direction, from the Rocky Mountain, Cordilleran, and Laurentide glacial centres, and the relationships between the various lobes are poorly understood. Field examination of the pebble to boulder fraction indicates that the till units are characterized by 1) clasts of green metaconglomerate and low-grade greenish grey schist, plus granite and other igneous rocks (mixed Laurentide and Cordilleran sources), in the northwest; 2) clasts of grey carbonate (Rocky Mountain or Cordilleran source) in the west and southwest; 3) mainly quartzite and igneous (primarily granite) clasts (Laurentide source) in the east; 4) abundant well-rounded quartzite clasts, incorporated from the underlying Tertiary gravel deposits, in parts of the centre and south; 5) boulders of low-grade schist (?earlier Cordilleran source) at three sites in the south-central part of the area; and 6) a boulder of low-grade, grey metamorphic rock, perhaps phyllite, in the southeast (source uncertain).

The majority of the samples were collected from areas accessible by road, although a few were obtained using a helicopter to reach less accessible sites. Most of the samples collected are from till, although a few are from bedrock, lacustrine, colluvial, or fluvial units. At each site, a 2–3 kg sample was collected from below the top of the C soil horizon (at a depth of about 2 m) for geochemical and carbonate analysis of the less than 0.063 mm fraction and texture analysis of the less than 2 mm fraction. Field data recorded at each site included information on the general sampling environment and observations on the colour, texture, moisture content, and mineralogy of the till.

The matrix fraction (<0.063 mm or <230 mesh) was analyzed by flame atomic absorption spectrometry (AA) for Ag, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Pb, V, Zn, and (for a few samples) Mg, and by instrumental neutron activation analysis (INAA) for Ag, As, Au, Ba, Br, Cd, Ce, Co, Cr, Cs, Eu, Fe, Hf, Ir, La, Lu, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, Th, W, U, Yb, Zn, and Zr. The results are shown as a series of element distribution maps.

There is a good correlation between Ce, La, Sm, and Th. The concentrations for this group of elements are low in the southwest quadrant and high in the southeast quadrant. There is also a strong correlation between Cr and Sc. These two elements, with three exceptions, show higher concentrations in the southwest-central part of the area and predominantly low concentrations in the southeast quadrant.

There is also a strong correlation between Co, Cu, and Ni, with the correlation between Co and Cu being slightly weaker. Sites with high concentrations (\geq 75 percentile) of this group of elements occur

primarily in the north half of the area, except for two small clusters of sites with high concentrations in the southwest quadrant.

1 Introduction

1.1 Study Location and Objectives

The Wapiti map area (NTS 83L) is located in northwestern Alberta, adjacent to the border with British Columbia (Fig. 1, 2) approximately twp 58 to 69, rge 1 to 13, W6). The area covers approximately 13 000 km² (about 5000 mile²).

Figure 1. Location of the map area (NTS 83L).

Figure 2. Geographical features in the Wapiti area.

118° 00'

The first objective of the study was to provide information on the surficial and Quaternary geology, including till petrology, geochemistry, diamond-indicator mineralogy, ice-flow directions, and glacial-dispersion patterns. The second objective was to prepare surficial geology maps at scales of 1:250 000 and 1:50 000. A surficial geology map at 1:250 000 scale accompanies this report, but there were insufficient resources to gather the ground control needed to produce the 1:50 000 scale maps.

Work on this project was suspended during the second of the three years originally planned due to redirection of staff effort to higher priority areas in northern Alberta. There was a complete field season only during year one; year two had a much reduced field season due to restructuring of the Alberta Geological Survey.

This report releases the current data and interpretations pertaining to the surficial geology and till geochemistry. A separate report will provide information on the kimberlite indicator minerals recovered from the till.

1.2 Sample Collection

Most of the surface samples were collected from areas accessible by road, although a few were obtained using a helicopter to reach less accessible sites. As a result, the distribution of sample sites is not uniform (*see* Fig. 7).

Most samples collected were from till, although a few were obtained from bedrock, lacustrine, colluvial, or fluvial units. Samples were taken from below the top of the C soil horizon, generally between a depth of 1.5 to 2.5 m, to minimize the effects of weathering on the carbonate, iron, and clay content of the till and to maximize the preservation of indicator mineral grains. About three-quarters of the samples were collected from roadcuts or other naturally exposed sections; the remainder were collected from sample pits dug by hand into the undisturbed land surface. Till samples of about 25 kg were collected for analysis of diamond-indicator minerals, whereas 2 to 3 kg samples were taken for geochemical analysis. The small samples were placed in plastic bags, and the large till samples in 5-gallon (approx. 23 l) plastic pails. The field data recorded at each site included information on the natural setting and sampling environment, and observations on the colour, texture, moisture content, and mineralogy of the till.

1.3 Physiography

The physiography of Alberta, including the Wapiti map area, has been described by Bostock (1970a, b), Klassen (1989), and Pettapiece (1986). Some of the information given below was derived from Twardy and Corns (1980), a soils report dealing specifically with the Wapiti map area.

The Wapiti map area encompasses the transition zone from the Interior Plains to the Eastern Cordillera. Elevation rises from about 525 m (1720 ft) in the northeast to 2455 m (8050 ft) in the southwest (Fig. 3). Four physiographic regions can be defined: the Wapiti Plains, the Alberta Plateau Benchlands, the Rocky Mountain Foothills, and the Rocky Mountains (Fig. 4).

Figure 4. Pysiographic map, Wapiti map area. (from Twardy and Corns, 1980 and Pettapiece, 1986)

The **Wapiti Plains** cover the northern and northeastern portions of the area. Maximum elevation is about 855 m (2800 ft) and the landscape is low relief, undulating to rolling. The area is underlain primarily by glaciolacustrine and glaciofluvial sediment.

The **Alberta Plateau Benchlands**, which forms a northwest-trending unit through the centre of the map area, is a dissected benchland with high local relief. The surface is underlain by till, weathered bedrock, or local Tertiary quartzite gravel. Weathered bedrock forms the surface mainly in the southwestern part of the area. The gently dipping soft bedrock is relatively easily eroded and colluvium partially mantles many of the eroded slopes. Average elevation ranges from about 855 to 1465 m (2800–4800 ft), with a few highlands rising to about 1525 m (5000 ft).

The **Rocky Mountain Foothills** form a generally northwest-trending division between the Benchlands and the Rocky Mountains. The surface is underlain by folded Cretaceous and Tertiary bedrock with a thin and discontinuous cover of Quaternary sediment, primarily till and colluvium. Elevations range from 1065 to 1830 m (3500–6000 ft), although they are generally between 1525 and 1585 m (5000–5200 ft).

The **Rocky Mountains** occupy the southwest portion of the area. Landforms in this unit consist of steep valleys and peaks that have been modified by glacial action. Features such as cirques, aretes, and U-shaped valleys are common. The mountains are composed of highly folded and faulted rock, primarily of Mesozoic age. Elevations range from 1525 to 2455 m (5000–8050 ft).

2 Surficial Geology

The surficial geology is shown on Map 239 (on cd). This map was compiled by Andriashek (1983) from unpublished work by L. Bayrock and A. Twardy. This is the first colour version of this map to be released.

Preliminary field data indicated that the boundaries of some of the polygons on the original map are not sufficiently reliable for a 1:50 000 map. This is particularly true for the thin and/or discontinuous till units, and the adjacent exposed bedrock units.

One of the objectives of this project was therefore to validate and perhaps refine this map, so that it could be produced at 1:50 000 scale. However, suspension of the project in year two precluded the collection of enough data to allow production of the 1:50 000 scale maps.

2.1 Map Units

There are twenty-four primary surficial map units on Map 239. There are also a number of composite units, indicated by a pattern superimposed on the unit colour, which signifies a thin and/or discontinuous unit overlying another unit. The properties of the various map units are summarised in the legend for Map 239. The sediment types covering major portions of the region are till, glaciolacustrine sediment, weathered bedrock, and, to a lesser extent, glaciofluvial sediment. Glaciolacustrine sediment (map units 5, 6, and 7) and glaciofluvial sediment (map units 8, 9, and 10) are confined mainly to the Wapiti low-land in the north and northeast. There are also significant quantities of glaciofluvial sediment in the upstream terraces along rivers such as the Narraway, Kakwa, Wapiti, and Smoky, and along Gunderson Creek.

The moraine units, composed predominantly of till, include those of Continental–Laurentide origin (units 12 to 16), Cordilleran–Rocky Mountain origin (units 16 to 19), and mixed origin (units 20 and 21). The units consist primarily of ground moraine (low relief with an undulating to rolling topography) and hummocky moraine (moderate to high relief with a hummocky topography).

The bedrock units consist of shale and siltstone (unit 22), sandstone of the Paskapoo Formation (unit 23), and more inducated conglomerate and sandstone (unit 24). Units 22 and 23 are in the central and southwest portion of the area, whereas unit 24 outcrops in the Rocky Mountains.

2.2 Ice Flow and History

The Wapiti area is located in a region that was subjected to glacial flow from three sources: the Rocky Mountains, the Cordillera, and the Laurentide (Continental) glacial centres. The ice-flow direction and relationships between the various lobes are, however, poorly understood.

Limited examination, primarily in the field, of the pebble to boulder clast sizes reveals that distinctive clasts types are found in the till only in certain parts of the study area. The till units are characterized by:

- clasts of green metaconglomerate and low-grade greenish grey schist, plus granite and other igneous rocks, in the northwest;
- clasts of grey carbonate in the west and southwest;

- mainly quartzite and igneous (primarily granite) clasts in the east;
- abundant well-rounded quartzite clasts incorporated from the underlying Tertiary gravel deposits in parts of the centre and south (Fig. 5);
- boulders of low-grade schist at three relatively closely spaced sites west of the Smokey River in the south-central portion of the area (twp 59, rge 8, W6, Map 239 near site NAT96-176, Fig. 7 and Appendix A); and
- a boulder of low-grade, grey metamorphic rock, perhaps phyllite, east of the Smoky River in the southeastern part of the area (twp 61, rge 3, W6, Map 239; site NAG96-594, Fig. 7 and Appendix A).

Figure 5. Preliminary subdivision of map area based on coarse clast lithology.

EUB Earth Sciences Report 2000-12 (September 2001) • 7

The low-grade metamorphic and the metaconglomerate clasts are believed to have come from sources west and slightly northwest of the northwest corner of the map area, perhaps as far west as the Cordillera. The carbonate rocks are believed to have been eroded from the Paleozoic formations exposed in the Rocky Mountains.

The granite and related rock types were transported into the area by the Laurentide glaciers which incorporated these rock types as they flowed over the Precambrian Shield. This source is also supported by the occurrence of one boulder-sized clast of a very distinctive reddish brown conglomerate on Pinto Creek in the northwestern portion of the area (Fig. 7, site NAG96-681). This boulder likely came from conglomerate that is part of the Precambrian Martin Lake Formation. The distribution of this formation is confined to the north-central arm of Lake Athabasca in northwestern Saskatchewan.

The above petrological information indicates that glaciers may have flowed from the northeast (Laurentide), the Cordillera and the Rocky Mountains. The occurrence of clasts of metaconglomerate and low-grade schist, together with granite and related rocks, indicates a mixing of sediment transported by the Cordilleran and Laurentide ice sheets. This may have been a Laurentide glacier overriding Cordilleran deposits or the vice-versa. The data collected so far are inconclusive.

The till containing the grey carbonate clasts was likely deposited by glaciers flowing out of the Rocky Mountains, or perhaps out of a different portion of the Cordillera. When the eastern margin of the Cordilleran till units, (shown on Map 239), and units 16 and 19 are plotted on the three-dimensional map (Fig. 6), it is obvious that the ice responsible for depositing these sediments was confined to the higher parts of the landscape. This suggests either the presence of the Laurentide glacial front directly to the east, or that the ice that deposited this till lacked the energy to continue advancing to the lower elevations.

The till in unit 19 is distinctly different from the other till units in that it is deeply weathered. The carbonate sediments are leached to a depth of at least 2.5 m, whereas the other units are generally leached to less that 1.5 m. Bayrock (unpublished field notes, 1972) interpreted this to mean that unit 19 is much older than the other glacial units. He also believed that this unit was of Cordilleran origin.

The presence of boulders of low-grade schist (*see* item [5] above) at a few sites near where this unit 19 has been mapped also suggests that this sediment was deposited by ice flowing from a Cordilleran source. These boulders are probably not directly related to the ice advance that deposited the unit containing the clasts of low-grade metamorphic and the metaconglomerate rocks in the northwestern part of the map area.

The presence of a boulder of low-grade metamorphic rock (*see* item [6] above), suggests that the till at this site incorporated sediment from a Cordilleran source. However, as this till directly overlies a Tertiary gravel deposit, the clast may have been derived from the underlying gravel, although no other metamorphic clasts were found in the gravel pit at this site.

The contribution of clasts transported by rivers flowing out of the Cordillera and subsequently eroded by the Laurentide glaciers is unknown. However, this is believed to be comparatively minor because the existing streams flowing from the Cordillera are relatively small and do not originate in the areas where the distinctive clasts are believed to outcrop.

Figure 6. Three dimensional map showing approximate eastern limit of the Cordillearan/Rocky Mountain tills (based on surficial geology map 239)

Figure 7. Location of geochemical samples. The sample number prefixes such as NAT96-, NAT97- NAG96- and NAT97-, shown in the appendix have been omitted here. There are two sites, both located in the northwest quadrant at which two samples were collected: samples 199 and 683 are both till; sample 681 is gravel and 682 is bentonite. In later figures the analytical values for the two samples at each of these sites, will always be in the same position relative to the site symbol as are the sample numbers in this figure, for example the value for sample 681 will always be to the right of the symbol.

3 Analytical Methods

Each of the 2 to 3 kg samples was air dried, gently disaggregated to avoid the crushing of rock and mineral grains, and screened using 2.00 mm and 0.063 mm stainless steel sieves. About 50 grams of the <0.063 mm (-230 mesh) fraction was recovered from each sample. This was then divided to provide subsamples for flame atomic absorption spectrometry (AA), instrumental neutron activation analysis (INAA), and reference-sample storage. The remainder of the sample was retained for possible future analysis.

Prior to submission of the samples to the laboratories, the sample order was randomized and both duplicate and standard samples were inserted. About five percent of the samples submitted were duplicates or standards.

The AA analyses were done by CanTech Laboratories Inc. using a 'total digestion' procedure. A 1 g subsample of the <0.063 mm fraction was dissolved in a fuming HF-HClO₄-HNO₃ mixture and then analyzed. The procedure determined the concentrations of Ag, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Pb, V, Zn, and, for a few samples, Mg.

The INAA analyses were carried out by Becquerel Laboratories, Inc. Each subsample of about 10 g was encapsulated, sealed and irradiated with neutron flux in a 2 MW pool-type reactor. Following a 7-day period to allow transient products to decay, the gamma radiation from the samples was counted for approximately 500 seconds using a high resolution Ge detector system. This procedure was used to determine the concentrations of Ag, As, Au, Ba, Br, Cd, Ce, Co, Cr, Cs, Eu, Fe, Hf, Ir, La, Lu, Mo, Na, Ni), Rb, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, Th, W, U, Yb, Zn, and Zr.

Table 1 lists the detection limit for each element. Appendix A contains all geochemical data. Note that sample-number prefixes such as NAT96-, NAT97-, NAG96-, and NAT97-, shown in the appendix, have been omitted from Figure 7 for simplicity (so that NAG96-587 becomes 587). There are two sites, both located in the northwest quadrant of the map area, at which two samples were collected: samples 199 and 683 are both till; sample 681 is gravel and sample 682 is bentonite. In the element distribution plots that follow, the analytical values for the two samples in each of these pairs will always be in the same position, relative to the site symbol, as are the sample numbers in Figure 7 (e.g. the value for sample 681 will always be to the right of the symbol).

Additional analyses were carried out to determine the texture and carbonate content of each sample. The texture analyses used sieving and hydrometer techniques to determine the proportions of sand, silt, and clay (0.063 mm, 0.050 mm, 0.004 and 0.002 mm boundaries). The Alberta Geological Survey laboratory uses a slightly modified version of the American Society for Testing Materials (1954) procedure for grain-size analysis. The values obtained by the Survey's procedure were found to differ little from those obtained by the American Society for Testing Materials (ASTM) procedure, and reduced the analytical time required. The fundamental difference between the two methods is that the Survey's laboratory uses a computer program to determine the silt-clay boundary, based on only the 2-, 4-, 8-, and 24-hour hydrometer readings. Dry sieves and an electronic balance were used to calculate the percentage of sand, using the conventional ASTM procedure.

Carbonate content in the silt-clay fraction (<0.063 mm) was determined using the Chittick apparatus, a procedure that was first designed and successfully applied to till analyses by Dreimanis (1962) and later adapted by Christiansen and Ross (1971). The Survey's technique involves adding 10% HCl to the sam-

ple and measuring the volume of CO_2 gas released, through the reaction between the acid and sample, as a function of time. A curve showing the rate of CO_2 production with time can then be plotted, and the percentage of calcite and dolomite can be calculated from this.

Table 1. Analytical methods and detection limits, for till matrix geochemistry.

Element	Element	Detection limit	Method
symbol	name		
,			
Ag	silver	0.2 ppm	AA / total digestion
As	arsenic	0.5 ppm	INNA
Au	gold	2 ppb	INNA
Ba	barium	50 ppm	INNA
Br	bromine	0.5 ppm	INNA
Cd	cadmium	0.2 ppm	AA / total digestion
Ce	cerium	5 ppm	INNA
Co	cobalt	2 ppm	AA / total digestion
Cr	chromium	20 ppm	INNA
Cs	cesium	0.5 ppm	INNA
Cu	copper	2 ppm	AA / total digestion
Eu	europium	1 ppm	INNA
Fe	iron	0.02%	AA / total digestion
Hf	hafnium	1 ppm	INNA
Ir	iridium	50 ppm	INNA
La	lanthanum	2 ppm	INNA
Li	lithium	1.0 ppm	AA / total digestion
Lu	lutetium	0.2 ppm	INNA
Mg	magnesium	0.01%	AA / total digestion
Mn	manganese	5 ppm	AA / total digestion
Mo	molybdenum	2 ppm	AA / total digestion
Na	sodium	0.02 %	INNA
Ni	nickel	2 ppm	AA / total digestion
Pb	Lead	2 ppm	AA / total digestion
Rb	rubidium	5 ppm	INNA
Sb	antimony	0.1 ppm	INNA
Sc	scandium	0.2 ppm	INNA
Se	selenium	5 ppm	INNA
Sm	samarium	0.1 ppm	INNA
Sn	tin	100 ppm	INNA
Та	tantalum	0.5 ppm	INNA
Tb	terbium	0.5 ppm	INNA
Te	tellurium	10 ppm	INNA
Th	thorium	0.2 ppm	INNA
U	uranium	0.2 ppm	INNA
V	vanadium	5 ppm	AA / total digestion
W	tungsten	1 ppm	INNA
Yb	ytterbium	1 ppm	INNA
Zn	zinc	2 ppm	AA / total digestion
Zr	zirconium	200 ppm	INNA

AA = Flame Atomic Absorption Spectrophotometry

NA = Instrumental Neutron Activation Analysis

4 Analytical Results

4.1 Regional Geochemistry

Part of the primary purpose of this report is to release the geochemical data. This section presents only preliminary comments on the distribution of, and relationships between, the target elements.

The analytical data are listed in Appendix A and plotted on Figures 8 to 76. Table 2 provides a statistical summary of all analytical data, whereas Table 3 summarizes only the data for the till and diamicton samples. Because of the large number of figures compared to the amount of text, Figures 8 to 76 have been placed in a block at the end of this section.

Ag, Silver

This element as determined by AA, varies from below the detection limit of 0.2 ppm up to 0.9 ppm, and averages 0.18 ppm (Fig. 8; Tables 2, 3). The 75th percentile is 0.2 ppm and the 95th percentile is 0.4 ppm.

Higher concentrations of Ag (\geq 75th percentile) are found locally throughout the area (Fig. 8). The highest concentrations (\geq 95th percentile) are primarily from samples collected from the northern half of the area at the sites where the till surface is exposed above the lacustrine cover. The highest value (0.9 ppm) is from a site on the Narraway River on the west side of the area.

As, Arsenic

This element as determined by INAA, varies from 3 to 40 ppm, and averages 9.02 ppm (Fig. 9; Tables 2, 3). The 75th percentile is 10 ppm and the 95th percentile is 14 ppm.

Higher concentrations of As (\geq 75th percentile) are found primarily in the northern part of the area, with other concentrations in the central and south-central parts (Fig. 9). The highest concentrations (\geq 95th percentile) are primarily in till samples from sites in the northeast (14, 17, and 18 ppm), and from one site in the southeast (17 ppm). The highest value (40 ppm) is from a till site in the west-central portion of the area.

Au, Gold

This element as determined by INAA, varies from below the detection limit of 2 ppb up to 36 ppb, and averages 4.3 ppb; the maximum for the till samples is 15 ppb (Fig. 10; Tables 2, 3). The 75th percentile is 5 ppb and the 95th percentile is 11.6 ppb for all samples.

Higher concentrations of Au (\geq 75th percentile) are present throughout the area (Fig. 10). The highest concentrations (\geq 95th percentile) are primarily from two till sites and one fluvial site in the west quarter of the area (12, 15, and 17 ppb), one site in the east (13 ppb), and one site in the northwest (36 ppb; sample no. 681). Note that, on Figure 10, the bedrock lithology symbol at this last site obscures the smaller cross identifying it as a fluvial sample.

Ba, Barium

This element as determined by INAA, varies from 400 to 2400 ppm, and averages 873 ppm; the maximum for the till samples is 1400 ppm (Fig. 11; Tables 2, 3). The 75th percentile is 940 ppm and the 95th

Element	Ag	Ag	As	Au	Ba	Br	Cd	Cd	Ce	Со	Co	Cr	Cs	Cu	Eu
Method	AA/Total	NA	NA	NA	NA	NA	AA/Total	NA	NA	AA/Total	NA	NA	NA	AA/Total	NA
DetectionLimit	0.2 ppm	2 ppm	0.5 ppm	2 ppb	50 ppm	0.5 ppm	0.2 ppm	5 ppm	5 ppm	2 ppm	5 ppm	20 ppm	0.5 ppm	2 ppm	1 ppm
Number of samples	92	90	90	90	90	90	92	90	90	92	90	90	90	92	90
Min	0.1bd	1bd	3.0	1bd	400	0.25bd	0.1bd	2.5bd	39	3	2.5bd	10bd	1.3	13	0.5bd
Max	0.90	4	40.0	36	2400	2.9	2.0	2.5	90	19	22	140	6.4	38	2.0
Average	0.18	1	9.02	4.3	873	1.15	0.35	2.5	62.2	11.4	13	85.8	4.45	24.7	0.7
75%ile	0.20	1	10.00	5.0	940	1.44	0.40	2.5	70.8	13.0	15	94.0	5.20	28.1	1.0
95% ile	0.40	2	14.00	11.6	1155	2.38	0.80	2.5	77.6	17.0	19	115.5	6.06	33.9	1.0

 Table 2. Statistical summary of analytical data from surface samples of all sediment types.

 (<0.063 mm fraction) and texture (<2.00 mm).</td>

Element	Fe	Fe	Hf	lr	La	Li	Lu	Mg	Mn	Мо	Mo	Na	Ni	Ni	Pb
Method	AA/Total	NA	NA	NA	NA	AA/Total	NA	AA/Total	AA/Total	AA/Total	NA	NA	AA/Total	NA	AA/Total
DetectionLimit	0.02%	0.2%	1 ppm	50 ppm	2 ppm	1.0 ppm	0.2 ppm	0.01%	5 ppm	2 ppm	1 ppm	0.02%	2 ppm	10 ppm	2 ppm
Number of samples	92	90	90	90	90	92	90	12	92	92	90	90	92	90	92
Min	1.5	1.6	3	25bd	22	8	0.1bd	0.97	63	2	0.5bd	0.1	5	5bd	8
Max	4.5	4 .2	18	25bd	48	37	0.5	1.55	2300	6	1.0	1.4	45	61	44
Average	3.10	2.80	7.2	25	31.8	16.6	0.19	1.27	371	4.0	0.5	0.53	31.5	34.0	15.5
75%ile	3.40	3.10	8.0	25	35.0	19.0	0.30	1.35	382	5.0	0.5	0.66	36.0	4 2.9	17.0
95% ile	4.05	3.56	11.8	25	38.6	33.0	0.36	1.54	534	5.0	0.8	1.10	42.0	58.0	19.0

Element	Rb	Sb	Sc	Se	Sm	Sn	Та	Tb	Те	Th	U	v	W	Yb	Zn	Zn	Zr
Method	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AA/Total	NA	NA	AA/Total	NA	NA
DetectionLimit	5 ppm	0.1 ppm	0.2 ppm	5 ppm	0.1 ppm	100 ppm	0.5 ppm	0.5 ppm	10 ppm	0.2 ppm	0.2 ppm	5 ppm	1 ppm	1 ppm	2 ppm	100 ppm	200 ppm
Number of samples	90	90	90	90	90	90	90	90	90	90	90	92	90	90	92	90	90
Min	29	0.5	7.0	2.5bd	3.4	50bd	0.6	0.25bd	5bd	5.1	1.7	21	0.5bd	0.5bd	58	50bd	100bd
Max	120	1.7	17.0	2.5bd	8.4	50bd	1.6	1.3	5bd	22.6	6.5	143	2.0	4	181	160	630
Average	81.5	1.05	11.28	2.5	4.96	50	1.01	0.7	5.0	10.3	3.5	97.1	0.7	2.2	104.2	52	252
75%ile	92.8	1.18	12.00	2.5	5.30	50	1.10	0.8	5.0	11.0	3.7	109.0	1.0	3.0	112.3	50	390
95% ile	100.0	1.40	14.55	2.5	6.11	50	1.30	1.0	5.0	12.3	4.3	120.7	1.0	3.0	135.5	50	550

	Lab Text	Chittick	Chittick	Chittick	Chittick	Chittick	Chittick	Field	Field Text	Field Text	Field Text						
	Sand	Sand	Silt	Clay	Sand	Silt	Clay	Calcite	Total	Calcite	Dolomite	Tota	Cct/Dmt	Reaction			
	%	(>63)	(<63)	(<4)	(>50)	(<50)	(<2)		carbonate			carbonates	ratio	with HCI	Sand %	Silt%	Clay%
	1-2mm							ml/g)	ml/g	%	%	%					
Count	92	92	92	92	92	92	92	91	91	91	91	91	91	68	67	67	67
Min	0.2	1.8	11.6	2.4	2.5	11.3	1.3	1.0	3.1	0.5	0.5	1.30	0.09	1	5	7	3
Max	25.0	85.9	60.0	71.0	87.2	66.7	65.5	59.4	88.2	26.6	17.5	38.45	2.25	4	90	65	70
Average	2.95	27.26	41.84	30.90	29.78	46.59	23.63	9.29	25.14	4.17	6.52	10.69	0.62	3.4	23.5	41.9	34.4
75%ile	2.43	32.48	47.40	38.23	34.88	52.10	30.15	12.40	32.25	5.55	8.50	13.80	0.77	4.0	27.5	52.5	45.0
95% ile	10.71	49.01	55.12	45.95	51.10	61.38	35.35	19.85	48.65	8.90	10.60	21.05	1.15	4.0	67.0	60.0	60.0

bd = below detection limit

All values below detection limit are shown as one half of detection limit

1.60 = data not discussed because either they were below the detection limit or because data from and alternative analytical method were discussed for this element.

Table 3. Statistical summary of analytical data from surface samples of till and diamicton only.

Element	Ag	Ag	As	Au	Ва	Br	Cd	Cd	Ce	Co	Co	Cr	Cs	Cu	Eu		
Method	AA/Total	NA	NA	NA	NA	NA	AA/Total	NA	NA	AA/Total	NA	NA	NA	AA/Total	NA		
DetectionLimit	0.2 ppm	2 ppm	0.5 ppm	2 ppb	50 ppm	0.5 ppm	0.2 ppm	5 ppm	5 ppm	2 ppm	5 ppm	20 ppm	0.5 ppm	2 ppm	1 ppm		
Count	81	79	79	79	79	79	81	79	79	81	79	79	79	81	79		
Min	0.1bd	4	3.0	1bd	400	0.25bd	0.1bd	2.5bd	39	5	6	48	2.1	13	0.5bd		
Max	0.9	4	40.0	15	1400	2.9	1.5	2.5	90	19	22	120	6.4	38	2.0		
Average	0.19	4	9.17	3.8	851	1.19	0.31	2.5	63.3	11.4	13	84.4	4.56	24.5	0.7		
75%ile	0.20	4	9.75	5.0	930	1.50	0.40	2.5	71.0	13.0	15	93.0	5.20	28.0	1.0		
95% ile	0.40	2	14.30	8.3	1110	2.36	0.70	2.5	77.0	16.0	19	110.0	6.01	33.0	1.0		
Element	Fe	Fe	Hf	Ir	La	Li	Lu	Mg	Mn	Мо	Mo	Na	Ni	Ni	Pb	1	
Method	AA/Total	NA	NA	NA	NA	AA/Total	NA	AA/Total	AA/Total	AA/Total	NA	NA	AA/Total	NA	AA/Total		
DetectionLimit	0.02%	0.2%	1 ppm	50 ppm	2 ppm	1.0 ppm	0.2 ppm	0.01%	5 ppm	2 ppm	1-ppm	0.02%	2 ppm	10 ppm	2 ppm		
Number of samples	81	79	79	79	79	81	79	12	81	81	79	79	81	79	81		
Min	1.5	1.6	4	25bd	22	9	0.1bd	0.97	145	2	0.5bd	0.1	19	5bd	9		
Max	4.5	4.2	12	25bd	48	37	0.5	1.55	588	6	1.0	1.3	43	59	20		
Average	3.10	2.8	6.8	25	32.4	17.1	0.19	1.27	326	4.0	0.5	0.49	31.5	33.1	15.4		
75%ile	3.40	3.1	8.0	25	35.0	20.0	0.30	1.35	371	5.0	0.5	0.57	36.0	41.0	17.0		
95% ile	4.10	3.6	10.0	25	38.1	33.0	0.40	1.54	503	5.0	0.8	1.00	41.0	53.2	19.0		
Element	Rb	Sb	Sc	Se	Sm	Sn	Та	Tb	Те	Th	U	v	w	Yb	Zn	Zn	Zr
Method	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AA/Total	NA	NA	AA/Total	NA	NA
DetectionLimit	5 ppm	0.1 ppm	0.2 ppm	5 ppm	0.1 ppm	100 ppm	0.5 ppm	0.5 ppm	10 ppm	0.2 ppm	0.2 ppm	5 ppm	1 ppm	1 ppm	2 ppm	100 ppm	200 ppm
Number of samples	79	79	79	79	79	79	79	79	79	79	79	81	79	79	81	79	79
Min	42	0.5	7.0	2.5bd	3.7	50bd	0.6	0.25bd	5bd	6.3	2.5	66	0.5bd	0.5bd	58	50bd	100bd
Max	120	1.5	15.0	2.5	8.4	50bd	1.4	1.3	5bd	14.0	5.1	143	2.0	4.0	181	160	610
Average	84.2	1.05	11.22	2.5	5.01	50	1.01	0.71	5	10.4	3.43	99.1	0.71	2.2	104	51	228
75%ile	93.5	1.10	12.00	2.5	5.30	50	1.10	0.80	5	11.0	3.70	109.0	1.00	3.0	112	50	370
95% ile	100.1	1.31	14.00	2.5	6.02	50	1.30	1.00	5	12.1	4.01	120.5	1.00	3.0	133	50	490
				Lab texture					C	arbonate by Chitti	ck			Field		Field Texture	•
	Sand	Sand	Silt	Clay	Sand	Silt	Clay	Calcite	Total	Calcite	Dolomite	Total	Cct/Dmt	Reaction			
	%	(>63)	(<63)	(<4)	(>50)	(<50)	(<2)		carbonate			carbonates	ratio	with HCI	Sand %	Silt%	Clay%
	1-2mm							ml/g)	ml/g	%	%	%					
Number of samples	81	81	81	81	81	81	81	81	81	81	81	81	81	63	63	63	63
Min	0.2	3.1	26.7	6.7	3.6	34.0	3.5	1.7	3.1	0.8	0.5	1.3	0.2	1	5	15	5
Max	25.0	49.5	60.0	53.2	50.6	66.7	39.2	59.4	88.2	26.6	17.5	38.5	2.2	4	75	65	70
Average	2.47	24.40	43.02	32.58	26.97	48.12	24.91	9.42	25.69	4.22	6.69	10.91	0.61	3.5	20.9	42.9	36.0
75%ile	2.26	30.10	47.90	38.60	32.60	53.30	30.30	12.40	32.50	5.60	8.60	13.90	0.77	4.0	25.0	55.0	45.0

bd = below detection limit

All values below the detection limit are shown as one half of the detection limit.

7.31

95% ile

39.50

55.50

1.60 = data not discussed because either they were below the detection limit or because data from and alternative analytical method were discussed for this element.

45.50

41.60

62.70

35.20

19.20

47.20

10.70

20.30

8.60

4.0

1.11

60.0

60.0

57.5

percentile is 1155 ppm for all samples.

Higher concentrations of Ba (\geq 75th percentile) are primarily from sites in the west half of the area (Fig. 11). The highest concentrations (\geq 95th percentile) are primarily from till samples collected at sites in the northwest (1200 ppm) and south-central (1200,1400 ppm) portions of the area, as well as one site in the northeast (1300 ppm). The highest value (2400 ppm) is from sand and gravel collected in the northwest-ern part of the area, near the northern border; this is the the same site that yielded the highest Au concentration.

Br, Bromine

This element as determined by INAA, varies from below the detection limit of 0.5 ppm up to 2.9 ppm, and averages 1.15 ppm (Fig. 12; Tables 2, 3). The 75th percentile is 1.44 ppm and the 95th percentile is 2.38 ppm.

Higher concentrations of Br (\geq 75th percentile) are found primarily in the northern half of the area, with a few sites in the south (Fig. 12). The highest concentrations (\geq 95th percentile) are primarily from till samples in the north and northeast (2.4, 2.4, 2.5, and 2.4 ppm). The highest value (2.9 ppm) is from two sites in the southwest where till from a Rocky Mountain or Cordilleran source covers the area.

Cd, Cadmium

This element as determined by INAA, varies from below the detection limit of 0.2 ppm up to 2.0 ppm, and averages 0.35 ppm; the maximum for the till samples is 1.5 ppm (Fig. 13; Tables 2, 3). The 75th percentile is 0.40 ppm and the 95th percentile is 0.80 ppm for all samples.

Higher concentrations of Cd (\geq 75th percentile) are found primarily in the west half of the area (Fig. 13). The highest concentrations (\geq 95th percentile) are primarily from till samples in the southwestern part of the area (1.4, 0.8, 0.8, 1.5, and 1.4 ppm). The highest value (2.0 ppm) is from a diamicton site in the southwest. These are all sites where Cordilleran ice flowed over the area.

Ce, Cerium

This element as determined by INAA, varies from 39 to 90 ppm, and averages 62.2 ppm (Fig. 14; Tables 2, 3). The 75th percentile is 70.8 ppm and the 95th percentile is 77.6 ppm.

Higher concentrations of Ce (\geq 75th percentile) are found locally throughout the area (Fig. 14) except in the southwest corner, which was covered by the Cordilleran glacial advance (Map 239). The highest concentrations (\geq 95th percentile) are found at four sites (80, 81, 90, and 81 ppm), all near the eastern or northern margin of the area where the Laurentide till outcrops.

Co, Cobalt

This element as determined by AA, varies from 3 to 19 ppm, and averages 11.4 ppm; the minimum for the till samples is 5 ppm (Fig. 15; , Tables 2, 3). The 75th percentile is 13 ppm and the 95th percentile is 17 ppm for all samples.

Higher concentrations of Co (\geq 75th percentile) are found locally throughout the area (Fig. 15). The highest concentrations (\geq 95th percentile) are primarily from samples collected in the northwest quadrant of the map area (17, 17, 18, and 17 ppm). High concentrations were also present at two sites in the

south-central part of the area (17 and 19 ppm).

Cr, Chromium

This element as determined by INAA, varies from below the detection limit of 20 ppm up to 140 ppm, and averages 85.8 ppm; the till samples have a minimum of 48 ppm and a maximum of 120 ppm (Fig. 16; Tables 2, 3). The 75th percentile is 94 ppm and the 95th percentile is 115.5 ppm for all samples.

Higher concentrations of Cr (\geq 75th percentile) are found primarily in the north half of the area, with another cluster of sites in the southwest-central part (Fig. 16). The highest concentrations (\geq 95th percentile) reflect the above pattern and are primarily from nontill samples. Sites include, in the northwest, 120 ppm (sand and gravel sample), 140 ppm (sandstone), 130 ppm (diamicton that is either colluvium derived from bedrock or till with a high bedrock component), and two with 120 ppm, one in the southcentral part and the other in the northeast. This may be a reflection of the abundant chromite grains found in the bedrock and till.

Cs, Cesium

This element as determined by INAA, varies from 1.3 to 6.4 ppm, and averages 4.45 ppm; the minimum for the till samples is 2.1 ppm (Fig. 17; Tables 2, 3). The 75th percentile is 5.2 ppm and the 95th percentile is 6.06 ppm for all samples.

Higher concentrations of Cs (\geq 75th percentile) are found locally throughout the area influenced by the Laurentide glacial advance (Fig. 17; Map 239). High values are absent in the southwest, the area effected by the Cordilleran and Rocky Mountain glaciers. The highest concentrations of Cs (\geq 95th percentile) are from widely scattered sample sites, in the extreme northwest (6.4 ppm), extreme northeast (6.3 ppm), west-central (6.1 ppm), and southwest-central (6.3 and 6.4 ppm) parts of the area.

Cu, Copper

This element as determined by AA, varies from 13 to 38 ppm, and averages 24.7 ppm (Fig. 18; Tables 2, 3). The 75th percentile is 28.1 ppm and the 95th percentile is 33.9 ppm.

Higher concentrations of Cu (\geq 75th percentile) are found at sites scattered through the northern half of the area and in a cluster of sites in the southwest-central part (Fig. 18). The highest concentrations of copper (\geq 95th percentile) are from till samples in the northeast (38 and 37 ppm) and from colluvium samples in the southwest-central part (36, 35, and 36 ppm).

Eu, Europium

This element as determined by INAA, varies from below the detection limit of 1 ppm up to 2.0 ppm, and averages 0.7 ppm (Fig. 19; Tables 2, 3). The 75th percentile and the 95th percentile are both 1.0 ppm.

Europium is barely detectable in the area. This element is at or below the detection limit for all but two sites, both of which are till with Eu concentrations of 2 ppm in the central part of the area.

Fe, Iron

This element as determined by AA, varies, for all samples, from 1.5 ppm to 4.5 ppm, and averages 3.10 ppm (Figure 20; Table 2 and 3). The 75th percentile is 3.40 ppm and the 95th percentile 4.05 ppm.

Higher concentrations of iron (\geq 75th percentile) are found primarily in the northwest and northeast with three others in the southwest quarter (Figure 20). The highest concentrations (\geq 95th percentile) are primarily from sample sites near the northeastern boarder (4.5, 4.5 4.1 and 4.3 ppm). One sample collected near the west central boarder yielded 4.4 ppm iron.

HF, Hafnium

This element as determined by NA, varies, for all samples, from below the detection limit of 3 ppm to 18 ppm, and averages 7.2 ppm; the till samples have a minimum of 4 ppm and a maximum of 12 ppm (Figure 21; Tables 2, 3). The 75th percentile is 8.0 ppm and the 95th percentile is 11.8 ppm for all samples.

Higher concentrations of Hf (\geq 75th percentile) are found mainly in the south half of the area (Fig. 21). This is primarily where the Laurentide till is thin and/or discontinuous over bedrock and for the sites near the west boundary, where the area may have been effected by Rocky Mountain or Cordilleran ice. The highest concentrations (\geq 95th percentile) are mainly from samples collected in the southwest (12 ppm in till, 18 ppm in gravel, 12 ppm in diamicton, 14 ppm in colluvium, and 12 ppm in colluvium), the area effected primarily by the Rocky Mountain and Cordilleran glaciers. There is also one site on Pinto Creek, near the western part of the northern border of the area, where quartzite gravel yielded a value of 12 ppm Hf.

Ir, Iridium

This element as determined by INNA is below the detection limit of 50 ppm for all samples.

La, Lanthanum

This element as determined by INAA, varies from 22 to 48 ppm, and averages 31.8 ppm; the minimum for till samples is 22 ppm (Fig. 22; Tables 2, 3). The 75th percentile is 35.0 ppm and the 95th percentile is 38.6 ppm for all samples.

In contrast to the elements described thus far, higher concentrations of La (\geq 75th percentile) are found primarily at sites in the central and southeastern parts of the map area (Fig. 22). The highest concentrations (\geq 95th percentile) are found at five sites: two in the central and south central part of the area (both at 40 ppm) where till is thin and/or discontinuous over bedrock, and three in the southeastern part (48, 39, and 39 ppm) where the till overlies Tertiary quartzite gravel.

Li, Lithium

This element as determined by AA, varies from 8 to 37 ppm, and averages 16.6 ppm; the minimum for the till samples is 9 ppm (Fig. 23; Tables 2, 3). The 75th percentile is 19 ppm and the 95th percentile is 33 ppm for all samples.

Higher concentrations of Li (\geq 75th percentile) are found locally at sites in the northeastern part of the area and at a few sites in the central and south-central parts (Fig. 23). The highest concentrations (\geq 95th percentile) are primarily from samples collected in the northeastern quadrant (34, 33, 37, 35, and 34 ppm), where the till contains the highest proportion of the less than 4 µm clay. One other site (with 33 ppm) occurs in the central part of the area, where the till onlaps the weathered bedrock.

Lu, Lutetium

This element as determined by INAA, varies from below the detection limit of 0.2 ppm up to 0.5 ppm, and averages 0.19 ppm (Fig. 24; Tables 2, 3). The 75th percentile is 0.30 ppm and the 95th percentile is 0.36 ppm.

Higher concentrations of Lu (\geq 75th percentile) are found locally in the eastern two thirds of the map area (Fig.24). The highest concentrations (\geq 95th percentile) are primarily from samples collected from the east-central part of the area (0.4, 0.5, 0.4, and 0.5 ppm). One other site (with 0.4 ppm) is located in the west-central part.

Mg, Magnesium

This element was determined by AA, only in the last few samples collected. The concentrations for these few samples vary from 0.97 to 1.55 ppm, and average 1.27 ppm (Tables 2, 3). The 75th percentile is 1.35 ppm and the 95th percentile is 1.54 ppm. There were not enough samples to produce an element distribution plot.

Mn, Manganese

This element as determined by AA, varies from 63 to 2300 ppm, and averages 371 ppm; the till samples have a minimum of 145 ppm and a maximum of 588 ppm (Fig.25; Table 2 and 3). The 75th percentile is 382 ppm and the 95th percentile is 534 ppm for all samples.

Higher concentrations of Mn (\geq 75th percentile) are found locally throughout the area (Fig. 25). The highest concentrations (\geq 95th percentile) are from two sites: quartzite gravel on Pinto Creek in the northwest (2100 ppm) and sandstone in the central part (2300 ppm). Till samples with concentrations exceeding the 95th percentile (\geq 506 ppm) are found primarily in the northern half of the area,. (going clockwise, from the northeast, 549, 506, 588, and 523 ppm). There is also one diamicton sample site in the southwest with 656 ppm Mn.

Mo, Molybdenum,

This element as determined by AA, varies from 2 to 6 ppm, and averages 4 ppm (Fig. 26; Tables 2, 3). The 75th percentile is 5 ppm and the 95th percentile is 5 ppm.

There is little variation in Mo concentration (only 4 ppm). Higher concentrations (\geq 75th percentile and \geq 95th percentile) are found locally throughout the area (Fig. 26). The highest concentrations (6 ppm) are in samples collected from the northern half of the area, primarily in the northwest quadrant.

Na, Sodium

This element as determined by INAA, varies from below the detection limit of 0.02% up to 1.4%, and averages 0.53%; the minimum for till samples is 0.7% and the maximum 1.3% (Fig. 27; Tables 2, 3). The 75th percentile is 0.66% and the 95th percentile is 1.10%.

The distribution of Na is unique. The higher concentrations (\geq 75th percentile) are confined primarily to the northwestern portion of the area (Fig. 27). The exception is a cluster of sites in the south-central part. The values for the highest concentrations of sodium (\geq 95th percentile) are similar in the northwest (1.2, 1.3, 1.1, 1.2, and 1.4 ppm) and south-central (1.1 and 1.1 ppm) parts. The high concentrations in the northwest are from a variety of sediments: recent fluvial gravel on the Wapiti River, till, quartzite-rich gravel, and sandstone bedrock.

Ni, Nickel

This element as determined by AA, varies from 5 to 45 ppm, and averages 31.5 ppm; the till samples contain a minimum of 19 ppm and a maximum of 43 ppm (Fig. 28; Tables 2, 3). The 75th percentile is 36 ppm and the 95th percentile is 42 ppm for all samples.

Higher concentrations of Ni (\geq 75th percentile) are found locally throughout the area except the southeast quadrant (Fig. 28). The highest concentrations (\geq 95th percentile) are from till sites in the northeast quadrant (42 and 42 ppm) and the southwest quadrant (43 ppm in till, and 44 and 45 ppm in colluvium).

Pb, Lead

This element as determined by AA, varies from 8 to 44 ppm, and averages 15.5 ppm; the till samples have a minimum of 9 ppm and a maximum of 20 ppm (Fig. 29; Tables 2, 3). The 75th percentile is 17 ppm and the 95th percentile is 19 ppm for all samples.

Higher concentrations of Pb (\geq 75th percentile) are found locally throughout the area (Fig. 29). A similar pattern exists for the highest concentrations (\geq 95th percentile; 19 to 20 ppm). The highest concentration (44 ppm) is from one bentonite sample collected in the west, near the western part of the northern border of the area.

Rb, Rubidium

This element as determined by INAA, varies from 28 to 120 ppm, and averages 81.5 ppm; the minimum for the till samples is 42 ppm (Fig. 30; Table 2 and 3). The 75th percentile is 92.8 ppm and the 95th percentile 100.0 ppm.

Higher concentrations of Rb (\geq 75th percentile) are found locally throughout much of the area (Fig. 30), except in the west and southwest where till of Rocky Mountain or Cordilleran origin is present. A similar pattern exists for the highest concentrations (\geq 95th percentile; 100 to 110 ppm). The highest concentration (120 ppm) is from one till sample collected in the southeast quadrant of the area.

Sb, Antimony

This element as determined by INAA, varies from 0.50 to 1.7 ppm, and averages 1.05 ppm; the maximum for the till samples is 1.5 ppm (Fig. 31; Tables 2, 3). The 75th percentile is 1.18 ppm and the 95th percentile is 1.40 ppm for all samples.

Higher concentrations of Sb (\geq 75th percentile) are found locally throughout the area (Fig. 31). The highest concentrations (\geq 95th percentile) are found in the central part of the area where a thin and discontinuous till rests on weathered bedrock (1.5. 1.4, 1.4, and 1.4 ppm) and in two samples of colluvium, from the south-central part (1.5 and 1.7 ppm), which may have a high proportion of bedrock

Sc, Scandium

This element as determined by INAA, varies from 7.0 to 17.0 ppm, and averages 11.28 ppm; the maximum for the till samples is 15.0 ppm (Fig. 32; Tables 2, 3). The 75th percentile is 12.0 ppm and the 95th percentile is 14.55 ppm for all samples.

Higher concentrations of Sc (\geq 75th percentile) are found locally throughout the area, except in the southwest (Fig. 32). The highest concentrations (\geq 95th percentile) are from five sites scattered throughout the

area (going clockwise, from the northwest corner, 15 ppm and 15 ppm in till, 17 ppm in sandstone, 15 ppm in till and 16 ppm in colluvium).

Se, Selenium

This element as determined by INAA, is below the detection limit of 5 ppm.

Sm, Samarium

This element as determined by INAA, varies from 3.4 to 8.4 ppm, and averages 4.96 ppm; the minimum for the till samples is 3.7 ppm (Fig. 33; Tables 2, 3). The 75th percentile is 5.30 ppm and the 95th percentile is 6.11 ppm for all samples.

Higher concentrations of Sm (\geq 75th percentile) are found locally throughout the northeastern two-thirds of the area; high values are absent in the southwest (Fig. 33). The highest concentrations (\geq 95th percentile) are from five sites scattered throughout the area (going clockwise, from the northwest corner, 6.6, 6.2, 8.4, 6.8, and 6.5 ppm). Except for the absence of a cluster of high values in the south-central part of the area, the distribution pattern for samarium is similar to that for scandium.

Sn, Tin

This element as determined by INAA, is below the detection limit of 100 ppm.

Ta, Tantalum

This element as determined by INAA, varies from 0.6 to 1.6 ppm, and averages 1.01 ppm; the maximum for the till samples is 1.4 ppm (Fig. 34; Tables 2, 3). The 75th percentile is 1.10 ppm and the 95th percentile is 1.30 ppm for all samples.

Higher concentrations of Ta (\geq 75th percentile) are found locally throughout the area, except in the southwest (Fig. 34). The highest concentrations (\geq 95th percentile) are from ten sites scattered throughout the area, the highest being from a bentonite sample in the northwest corner (1.6 ppm).

Tb, Terbium

This element as determined by INAA, varies from below the detection limit of 0.5 ppm up to 1.3 ppm, and averages 0.7 ppm; (Fig. 35; Tables 2, 3). The 75th percentile is 0.8 ppm and the 95th percentile is 1.0 ppm for all samples.

Higher concentrations of Tb (\geq 75th percentile) are found locally throughout the area, including one site in the southwest (Fig. 35). The highest concentrations (\geq 95th percentile) are from sites in the southeast-ern two-thirds of the area (going clockwise, from the northeast, 1.0, 1.3, 1.0, 1.1, 1.0, 1.1, and 1.0 ppm).

Te, Tellurium

This element as determined by INAA, is below the detection limit of 10 ppm.

Th, Thorium

This element as determined by INAA, varies from 5.1 to 22.6 ppm, and averages 10.3 ppm; the till samples have a minimum of 6.3 ppm and a maximum of 14.0 ppm (Fig. 36; Tables 2, 3). The 75th percentile is 11.0 ppm and the 95th percentile is 12.3 ppm for all samples.

Higher concentrations of Th (\geq 75th percentile) are found locally throughout the area, except in the southwest and west-central parts (Fig. 36). The highest concentrations (\geq 95th percentile) are from five sites (going clockwise, the southeast, 14, 13, 13, 12.5, and 22.6 ppm); the highest concentration comes from a bentonite sample collected in the northwest corner of the area.

U, Uranium

This element as determined by INAA, varies from 1.7 to 6.5 ppm, and averages 3.5 ppm; the till samples have a minimum of 2.5 ppm and a maximum of 5.1 ppm (Fig. 37; Tables 2, 3). The 75th percentile is 3.7 ppm and the 95th percentile is 4.3 ppm for all samples.

Higher concentrations of U (\geq 75th percentile) are found at sites scattered widely throughout the area (Fig. 37). The highest concentrations (\geq 95th percentile) are primarily from samples collected from the northern third (going clockwise, from the northwest corner, 4.4, 4.3, 6.5, 5.1, and 4.3 ppm); there is also one site with a high concentration in the southwest-central part of the area (4.6 ppm). The highest value (6.5 ppm) is from a bentonite sample.

V, Vanadium

This element as determined by INAA, varies from 21 to 143 ppm, and averages 97.1 ppm; the minimum for the till samples is 66 ppm (Fig. 38; Tables 2, 3). The 75th percentile is 109.0 ppm and the 95th percentile is 120.7 ppm for all samples.

Higher concentrations of V (\geq 75th percentile) are found primarily in the northwestern two-thirds of the area, although there are also three sites in the south-central part (Fig. 38). Vanadium is one of several elements absent in higher concentrations from the southeast quadrant. The highest concentrations (\geq 95th percentile) are found at six sites: two in the northeastern part (121 and 130 ppm), one in the west-central part (121 ppm), and three in the south-central part (141, 143, and 128 ppm).

W, Tungsten

This element as determined by INAA, varies from below the detection limit of 1 ppm up to 2 ppm, and averages 0.7 ppm (Fig. 39; Tables 2, 3). The 75th percentile is 1.0 ppm and the 95th percentile is 1.0 ppm for all samples.

The concentration of W is low in the area, being at or below the detection limit (1 ppm) in all but three samples. The 'higher' concentrations (1 ppm) of W (\geq 75th percentile) are found locally throughout the area except in the southwest (Fig. 39). The highest concentrations (2 ppm) are from samples collected in the central part (2 ppm) and near the east-central boundary (2 and 2 ppm).

Yb, Ytterbium

This element as determined by INAA, varies from below the detection limit of 1 ppm up to 4 ppm, and averages 2.2 ppm (Fig. 40; Tables 2, 3). The 75th percentile is 3.0 ppm and the 95th percentile is 3.0 ppm for all samples.

The concentration of Yb is low in the area. The higher concentrations (\geq 75th percentile) are found primarily in the southeastern two-thirds of the area (Fig. 40). The highest concentrations (4 ppm) are from two sample sites in the southeast. No other element shows this sort of distribution.

Zn, Zinc

This element as determined by INAA, varies from 58 to 181 ppm, and averages 104.2 ppm (Fig. 41; Tables 2, 3). The 75th percentile is 112.3 ppm and the 95th percentile is 135.5 ppm.

Higher concentrations of Zn (\geq 75th percentile) are found primarily in a southwest-trending area, extending from the northeast corner to the west-central part. A second area is present in the south-central part (Fig. 41). Zinc is another element that is absent in higher concentrations in the south-central part (136, highest concentrations (\geq 95th percentile) are primarily from three sites in the south-central part (136, 141, and 156 ppm). One site in the extreme northeast corner contains 139 ppm; another site near the west-central boundary contains the greatest concentration in the area (181 ppm).

Zr, Zirconium

This element as determined by INAA, varies from below the detection limit of 200 ppm up to 630 ppm, and averages 252 ppm; the till samples have a maximum of 610 ppm (Fig. 42; Tables 2, 3). The 75th percentile is 390 ppm and the 95th percentile is 550 ppm for all samples.

Higher concentrations of Zr (\geq 75th percentile) are found locally throughout the area (Fig. 42). The highest concentrations (\geq 95th percentile) are primarily from four samples collected from the southwest-central part of the area (630, 560, 510, and 600 ppm). One sample was also collected from near the east-central boundary (610 ppm).

As has been shown for other parts of Alberta, there is a correspondence between Zr concentration and sand content (e.g. Fenton et al., 1994). This is the case here as well, in that a number of samples with high concentrations of Zr are either sand and gravel samples or are from the area where the glacier moved over quartzite gravel in the southeast quadrant of the map area (Fig. 5).

4.2 Regional Carbonate Content

A portion of the matrix (<0.063 mm fraction) of each sample was subjected to Chittick analysis to determine the amount of calcite and dolomite. The results from these analyses are shown in Tables 2 and 3, and Figures 43 to 51.

4.2.1 Total Carbonate

Carbonate content of the matrix varies from 1.3 to 38.5% (3.1 to 88.15 ml/g; Tables 2, 3). The 75th percentile is 13.80% and the 95th percentile is 21.05%. Carbonate was measurable in all samples (Fig. 43, 44). The higher concentrations (\geq 75th percentile) are confined primarily to till samples collected in the southwestern two-thirds of the area. Carbonate is lower in the areas covered by bedrock and by fluvial or lacustrine sediment.

4.2.2 Dolomite

Dolomite content of the matrix varies from 0.5 to 17.5% (Tables 2, 3). The 75th percentile is 8.5% and the 95th percentile is 10.6%. Dolomite is found throughout the area, with the higher concentrations (\geq 75th percentile) occurring in the southwestern half (Fig. 45, 46). See also the comments in the following section on calcite.

4.2.3 Calcite

Calcite content of the matrix varies from 0.5 to 26.6% (Tables 2, 3). The 75th percentile is 5.55% and the 95th percentile is 8.90%. Calcite is found throughout the area, with the higher concentrations (\geq 75th percentile) primarily in the southeast quadrant and, to a lesser extent, the northwest and southwest quadrants. (Fig. 47, 48). This differs from the distribution for dolomite in that the higher concentrations of calcite are found mainly in a north-northwest trending band through the central portion of the area, whereas dolomite is also high in the western half of the area.

4.2.4 Calcite: Dolomite Ratio

The calcite:dolomite ratio of the matrix for all samples varies from 0.09 to 2.25, whereas that of the till samples varies only from 0.2 to 2.2 (Tables 2, 3). The 75th percentile is 0.77 and the 95th percentile is 1.15 for all samples. Calcite is more abundant in a north-northwest trending band through the centre of the area. Figures 45, 50 and 51 show the gradual elimination of the sites with high dolomite.

4.3 Regional Texture

The proportion of sand, silt, and clay and that of 1 to 2 mm sand, in the less than 2 mm matrix was determined for each sample.

4.3.1 Sand (2.00 to 0.063 mm)

Sand content of the matrix for all samples varies from 1.8 to 85.9%, whereas that of the till samples varies only from 3.1 to 49.5% (Tables 2, 3). For all samples, the 75th percentile is 32.48% and the 95th percentile is 49.01%. For till samples, the 75th percentile is 30.35% and the 95th percentile is 44.20%

The sediment is sandier in the west half of the area (Fig. 52, 53). This is likely a result of the glaciers incorporating more sand as they moved over the sandstone bedrock, and of the till being thinner, than in the eastern portion of the area. The samples, all of which were shallow, therefore reflect the basal sandier portion of the till layer.

4.3.2 Clay (< 0.004 mm)

Clay content of the matrix for all samples varies from 2.4 to 71.0%, whereas that of the till samples varies only from 6.7 to 53.2% (Tables 2, 3). For all samples, the 75th percentile is 38.23% and the 95th percentile is 45.95%. For the till samples, the 75th percentile is 38.35% and the 95th percentile is 45.49%.

The clay content is higher in the samples from the eastern half of the area (Fig. 54, 55). This is likely a result of the glaciers incorporating clay and silt as they moved over the extensive areas of fine-grained bedrock to the east and northeast.

4.3.3 1 to 2 mm Fraction

The coarse sand content for all samples varies from 0.2 to 25.0%, and the range is similar for that of just the till samples (Tables 2, 3). For all samples, the 75th percentile is 2.43% and the 95th percentile is
10.71%. For just the till samples, the 75th percentile is 2.31% and the 95th percentile is 10.54%.

The distribution pattern of this coarse sand fraction reflects that of the sand, with the coarse sand constituting a larger proportion (\geq 75th percentile) of the sediment in the samples collected in the west half of the area (Fig. 56, 57). This fraction was recovered primarily for later mineralogical analysis.

4.4 Regional Coarse-Clast Composition

Although the tills were not sampled to the extent that would have been possible with one more year of fieldwork, general trends in the composition of the pebble- to-boulder sized clasts can be determined.

As previously mentioned in the 'Ice Flow Direction and History' section, the pebble to boulder clast sizes reveal that particular clast types are found in the till only in certain portions of the study area (Fig. 5). The till units are characterized by:

- clasts of green metaconglomerate and low-grade greenish grey schist, plus granite and other igneous rocks, in the northwest;
- clasts of grey carbonate in the west and southwest;
- mainly quartzite and igneous (primarily granite) clasts in the east;
- abundant well-rounded quartzite clasts incorporated from the underlying Tertiary gravel deposits in parts of the centre and south (Fig. 5);
- boulders of low-grade schist at three relatively closely spaced sites west of the Smoky River in the south-central portion of the area (twp 59, rge 8, W6, Map 239; near site NAT96-176, Fig. 7 and Appendix 1); and
- a boulder of low-grade, grey metamorphic rock, perhaps phyllite, east of the Smoky River in the southeastern part of the area (twp 61, rge 3, W6, Map 239; site NAG96-594, Fig. 7 and Appendix 1).

4.5 Geochemical, Carbonate, and Textural Relationships

Detailed comparison of the relative variations in concentration among all the elements, the carbonate content, and the texture is beyond the scope of this report. Preliminary information on these relationships was, however, derived through inspection of the element distribution plots and preparation of selected scatter plots. The Pearson product-moment and Spearman rank correlation coefficients were also calculated. There are some groups of elements that have similar distribution patterns.

4.5.1 Interelement Associations

Cesium, Lanthanum, Samarium, and Thorium

There is a good correlation between Ce, La, Sm, and Th (Fig. 58). There also appears to be a weaker correlation between these elements and Rb (Fig. 59) and a slightly weaker relationship between Pb and Th that does not extend to Ce, La, and Sm (Fig. 60).

Examination of the element distribution plots, both the earlier figures showing the concentrations at or above the 75th percentile level (Fig. 14, 22, 33, 36) and those showing the concentrations for all samples (Fig. 61-66), reveals that the concentrations for this group of elements is low in the southwest quadrant of the map area and high in the southeast quadrant.

Cesium and rubidium show a somewhat similar pattern. Both are low in the southwest quadrant, whereas Rb, and to a lesser extent Cs, is high in the southeast quadrant.

Chromium and Scandium

There is a strong correlation between Cr and Sc (Fig. 67). There is also a weak correlation between Sc and Ni, but none between Cr and Ni. The concentrations for this group of elements are low in the southwest and high in the north (Fig. 16, 32, 68, 69).

This group differs from the previous group mainly in that the elements have, with three exceptions, predominantly low concentrations in the southeast quadrant and higher concentrations in the southwest-central part of the area (Fig. 70).

Cobalt, Copper, and Nickel

There is a strong correlation between Co, Cu, and Ni, with the correlation between Co and Cu being slightly weaker (Fig. 71). Although there is a weak correlation between Ni and Sc, there is little correlation between Sc and either Co or Cu.

This group differs from the previous groups in that the sites with high concentrations (\geq 75th percentile) occur primarily in the north half and southwest quadrant (two small clusters) of the area, and those with low concentrations in the southeast quadrant (Fig. 15, 18, 28, 70, 72-74).

4.5.2 Textural and Carbonate Associations

The Pearson product-moment and Spearman rank correlations suggested there is weak relationship between clay (< 0.004 mm) content and the concentrations of Ce, Cs, La, Pb, Rb, Sm, and Th. The scatter plots in Figures 75 and 76 indicate that there is a weak correlation between clay content and only the Cs and Rb concentrations. This is probably because there is also a good correlation between Cs and Rb.

There is also a weak negative correlation between silt (0.063–0.004 mm) content and the concentrations of Co, Cu, Ni, and Fe (Fig. 76). The reason for this is unknown. There is no positive correlation between these elements and the content of either clay or sand.

Other than the expected strong correlation between total carbonate and/or dolomite, as they are calculated from the same formula set, there are no strong correlations between carbonate content and element concentrations.

5 Summary

This interim report provides the current data and interpretations concerning the surficial geology and till geochemistry of the Wapiti map area (NTS 83L). Work on the project was suspended during the second of the three years originally planned due to redirection of staff effort to higher priority areas in northern Alberta.

The area encompasses the transition zone from the Interior Plains to the Eastern Cordillera, with elevation rising from about 525 m (1720 ft.) in the northeast to 2455 m (8050 ft.) in the southwest. Four physiographic regions can be defined: the Wapiti Plains, the Alberta Plateau Benchlands, the Rocky Mountain Foothills, and the Rocky Mountains.

The surficial geology is shown on a 1:250 000 scale map, compiled by Andriashek (1983) based on unpublished work by A. Twardy and L. Bayrock (Map 239). The main surficial materials are till, glaciolacustrine sediment, weathered bedrock, and, to a lesser extent, glaciofluvial sediment. The till includes units deposited by Laurentide (Continental), Cordilleran, and Rocky Mountain ice sheets.

The ice-flow direction, from the Rocky Mountain, Cordilleran, and Laurentide glacial centres, and the relationships between the various lobes are poorly understood. Field examination of the pebble to boulder fraction indicates that the till units are characterized by 1) clasts of green metaconglomerate and low-grade greenish grey schist, plus granite and other igneous rocks (mixed Laurentide and Cordilleran sources), in the northwest; 2) clasts of grey carbonate (Rocky Mountain or Cordilleran source) in the west and southwest; 3) mainly quartzite and igneous (primarily granite) clasts (Laurentide source) in the east; 4) abundant well-rounded quartzite clasts, incorporated from the underlying Tertiary gravel deposits, in parts of the centre and south; 5) boulders of low-grade schist (?earlier Cordilleran source) at three sites in the south-central part of the area; and 6) a boulder of low-grade, grey metamorphic rock, perhaps phyllite, in the southeast (source uncertain).

Most of the surface samples were collected from areas accessible by road, although a few were obtained using a helicopter to reach less accessible sites. Most of the samples collected were from till, although a few were collected from bedrock, lacustrine, colluvial, or fluvial units. At each site, a 2–3 kg sample was collected from below the top of the C soil horizon (at a depth of about 2 m) for geochemical and carbonate analysis of the less than 0.063 mm fraction and texture analysis of the less than 2 mm fraction. Field data recorded at each site included information on the general sampling environment and observations on the colour, texture, moisture content, and mineralogy of the till.

The matrix fraction (<0.063 mm or <230 mesh) was analyzed by flame atomic absorption spectrometry (AA) for Ag, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Pb, V, Zn, and (for a few samples) Mg, and by instrumental neutron activation analysis (INAA) for Ag, As, Au, Ba, Br, Cd, Ce, Co, Cr, Cs, Eu, Fe, Hf, Ir, La, Lu, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, Th, W, U, Yb, Zn, and Zr. The results are shown as a series of element distribution plots.

There is a good correlation between Ce, La, Sm, and Th. The concentrations for this group of elements are low in the southwest quadrant and high in the southeast quadrant. There is also a strong correlation between Cr and Sc. These two elements, with three exceptions, show higher concentrations in the southwest-central part of the area and predominantly low concentrations in the southeast quadrant.

There is also a strong correlation between Co, Cu, and Ni, with the correlation between Co and Cu being

slightly weaker sites with high concentrations (\geq 75 percentile) of this group of elements occurring primarily in the north half of the area, except for two small clusters of sites with high concentrations in the southwest quadrant.

Figure 8. Concentration of Ag in ppm by AA for sites with values 75th percentile. The size of the circle is proportional to the element concentration. Note that, at some sites the symbol indicating sample type is obscured because the element concentration symbol has a similar shade to the bubble. Where this has happened Figure 7, site numbers, provides this information.

Figure 9. Concentration os As in ppm by INNA for sites with values 75th percentile.

Figure 10. Concentration of Au in ppb by INNA for sites with values 75th percentile.

Figure 11. Concentration of Ba in ppm by INNA for sites with values 75th percentile.

Figure 12. Concentration of bromine in ppm by INNA for sites with values 75th percentile.

Figure 13. Concentration of Cd in ppm by AA for sites with values 75th percentile.

Figure 14. Concentration of Ce in ppm by INNA for sites with values 75th percentile.

Figure 15. Concentration of Co in ppm by AA for sites with values 75th percentile.

Figure 16. Concentration of Cr in ppm by INNA for sites with values 75th percentile.

Figure 17. Concentration of Cs in ppm by INNA for sites with values 75th percentile.

Figure 18. Concentration of Cu in ppm by AA for sites with values 75th percentile.

Figure 19. Concentration of Eu in ppm by INNA for sites with values 75th percentile.

Figure 20. Concentration of Fe in % by AA for sites with values 75th percentile.

Figure 21. Hafnium concentration (ppm by NA) for sites with values 75th percentile.

Figure 22. Concentration of La in ppm by INNA for sites with values 75th percentile.

Figure 23. Concentration of Li in ppm by AA for sites with values 75th percentile.

Figure 24. Concentration of Lu in ppm by INNA) for sites with values 75th percentile.

Figure 25. Concentration Mn in ppm by AA for sites with values 75th percentile.

Figure 26. Concentration of Mo in ppm by AA for sites with values 75th percentile.

Figure 27. Concentration of Na in % by INNA for sites with values 75th percentile.

Figure 28. Concentration of Ni in ppm by AA for sites with values 75th percentile.

Figure 29. Concentration of Pb in ppm by AA for sites with values 75th percentile.

Figure 30. Concentration of Rb in ppm by INNA for sites with values 75th percentile.

Figure 31. Concentration of Sb in ppm by INNA for sites with values 75th percentile.

Figure 32. Concentration of Sc in ppm by INNA for sites with values 75th percentile.

Figure 33. Concentration of Sm in ppm by INNA for sites with values 75th percentile.

Figure 34. Concentration of Ta in ppm by INNA for sites with values 75th percentile.

Figure 35. Concentration of Tb in ppm by INNA for sites with values 75th percentile.

Figure 36. Concentration of Th in ppm by INNA for sites with values 75th percentile.

Figure 37. Concentration of U in ppm by INNA for sites with values 75th percentile.

Figure 38. Concentration of V in ppm by AA for sites with values 75th percentile.

Figure 39. Concentration of W in ppm by INNA for sites with values 75th percentile.

Figure 40. Concentration of Yb in ppm by INNA for sites with values 75th percentile.

Figure 41. Concentration of Zn in ppm by AA for sites with values 75th percentile.

Figure 42. Concentration of Zr in ppm by INNA for sites with values 75th percentile.

Figure 43. Total carbonate content (in % of the <0.063mm fraction) for all samples. Note that at some sites the symbol indicating the sample type is obscured due to a similar shade to the bubble. Where this has happened refer to Figure 7, site numbers, for this information.

Figure 44. Total carbonate content (in % of the <0.063mm fraction) for samples with concentrations 75th percentile.

Figure 45. Dolomite content (in % of the <0.063mm fraction) for all samples.

Figure 46. Dolomite content (in % of the <0.063mm fraction) for samples with concentrations 75th percentile .

Figure 47. Calcite content (in % of the <0.063mm fraction) for all samples .

Figure 48. Calcite content (in % of the <0.063mm fraction) for samples with concentrations 75th percentile.

Figure 49. Calcite:dolomite ratio for all samples (<0.063mm fraction).

Figure 50. Calcite:dolomite ratio for samples with ratios 0.7 (<0.063mm fraction).

Figure 51. Calcite:dolomite ratio for samples with ratios 10 (<0.063mm fraction).

Figure 52. Sand content (in % of the >0.06 3 mm fraction) for all samples. Note that at some sites the symbol indicating the sample type is obscured because the element concentration symbol is a similar shade to the bubble. Where this happens refer to Figure 7, site numbers, for this information.

Figure 53. Sand content (in % of the >0.063 mm fraction) for samples with concentrations 75th percentile.

Figure 54. Clay content (in % of the <0.004 mm fraction) for all samples.

Figure 55. Clay content (in % of the >0.004 mm fraction) for samples with concentrations 75 percentile.

Figure 56. Coarse sand content (in % of the 1-2 mm fraction) for all samples.

Figure 57. Coarse sand content (percent of the 1-2 mm fraction) for samples with concentrations 75 percentile.

Figure 58. Scatter plots showing relationship between Ce, La, Sm and Th. Axis labels indicate the element (Th), the analytical method (NA = INNA) and concentration (ppm).

Figure 59. Scatter plots showing correlation between Rb and Ce, Cs, La, Sm and Th. Axis labels indicate the element, the analytical method and concentration.

Figure 60. Scatter plots showing correlation between Pb and Ce, La, Sm and Th. Axis labels indicate the element, the analytical method and concentration.

Figure 64. Concentrations of Th in ppm by INNA for all samples.

Figure 65. Concentrations of Cs in ppm by INNA for all samples.

Figure 66. Concentrations of Rb in ppm by INNA for all samples.

Figure 67. Scatterplots showing relationship between Cr, Sc and Ni. Axis labels indicate the element (Ni), the analytical method (NA = INNA, or AA) and concentration (ppm).

Figure 70. Distribution of samples with higher concentrations of: Group 1 (Ce, La, Sm and Th), Group 2 (Cr and Sc), and Group 3 (Co, Cu and Ni) elements.

Figure 71. Scatter plots showing correlations among Co, Cu, Ni, and Sc. Axis labels indicate the element, the analytical method and concentration.

EUB Earth Sciences Report 2000-12 (September 2001) • 94

Figure 72. Concentrations of Co in ppm by AA for all samples.

EUB Earth Sciences Report 2000-12 (September 2001) • 99

Appendix 1, part 1. Geochemical and related data from surface samples discussed in this report.

			Element Method		Ag AA	Ag NA	As NA	Au NA	Ba NA	Br NA	Cd AA	Cd NA	Ce NA	Co AA	Co NA	Cr NA	Cs NA	Cu AA	Eu NA	Fe AA	Fe NA	Hf NA	lr NA
THE		, I	DetectionLimit	:	0.2 ppm	2 ppm).5 pprr	2 ppb	50 ppm).5 ppn	0.2 ppm	5 ppm	5 ppm	2 ppm	5 ppm	20 ppm	0.5 ppm	2 ppm	1 ppm	0.0	0.0	1 ppm	50 ppm
Short ID	Field sample #	Lithology	Long original	Lat original																			
3	NAG96-583	till	118.962832	54.515635	0.2	1	8.1	6	850	0.3	0.5	2.5	55	11	11	72	3.7	18	0.5	2.4	2.0	8	25
4 5	NAG96-585	till	118.958523	54.714568 54.864058	0.1	1	10.0	1	810	1.8	0.4	2.5	59	13	15	78 74	4.4 5.5	27	0.5	3.2 3.3	2.8	ь 5	25 25
7	NAG96-587	till	119.351112	54.859121	0.3	1	8.7	7	920	2.4	0.3	2.5	58	17	20	93	4.8	27	0.5	3.3	2.9	5	25
8	NAG96-588	till +ill	119.033350	54.051583 54.353367	0.2	4	12.0	7	1100 730	1.0	0.2	2.5	54 70	12	13 15	120	6.3 5.1	30 21	0.5	3.4	3.1	8	25 25
10	NAG96-590	till	118.613639	54.064861	0.2	1	7.2	1	610	2.0	0.1	2.5	71	10	13	92	4.8	21	1.0	3.2	2.8	7	25
11	NAG96-591	till	118.550694	54.080194	0.1	1	3.0	3	400	1.3	0.1	2.5	53	8	9	58	3.5	19	1.0	3.0	2.4	5	25
12	NAG96-592 NAG96-593	till	118.447222	54.193556	0.2	1	8.5	ь 4	620 570	1.5	0.2	2.5	55 90	9	13	48 86	3.7 6.0	21	1.0	2.9	2.4	ю 9	25 25
14	NAG96-594	till	118.359444	54.322306	0.2	1	9.4	1	820	1.3	0.1	2.5	69	8	11	70	4.7	17	0.5	2.9	2.8	9	25
15 16	NAG96-595	till	118.115517	54.502133	0.1	1	12.0	5 4	770 820	1.1	0.1	2.5	68 73	15 10	19 12	91 92	5.7 6 1	28 23	0.5	4.3	3.4	7	25 25
17	NAG96-597	till	119.304750	54.414333	0.2	1	14.0	1	630	0.7	0.3	2.5	73	8	7	72	4.4	23	1.0	2.7	2.5	8	25
18	NAG96-598	till	118.024750	54.563267	0.1	1	11.0	1	770	1.6	0.2	2.5	66	12	14	88	5.9	30	1.0	4.0	3.3	8	25
19	NAG96-599 NAG96-648	till	118.219250	54.620250 54.561367	0.2	1	11.0 5.4	3	740 670	2.4	0.1	2.5	66 65	14 9	17	89 78	5.2 4.8	26 24	0.8	3.9 2.9	3.0 2.6	7	25 25
22	NAG96-649	till	119.129367	54.507833	0.2	1	5.6	1	850	1.3	0.5	2.5	67	11	13	87	4.3	19	0.5	2.7	2.5	9	25
23	NAG96-650	till	119.350600	54.467450	0.1	1	9.5	4	990	0.9	0.1	2.5	77	7	13	93	5.1	13	0.5	1.5	2.6	6	25
24 25	NAG96-651 NAG96-652	till	119.329550 119.956133	54.455683 54.892250	0.1	1	6.7 7.8	4 11	890 970	0.7	0.3	2.5	60 53	10 12	12 14	76 87	4.0 4.1	25 25	0.5	3.0	2.6	6	25 25
26	NAG96-653	till	119.914983	54.813700	0.1	1	7.5	5	850	1.4	0.1	2.5	49	13	16	90	3.8	26	0.5	3.0	2.5	5	25
27	NAG96-654	till	119.930517	54.136050	0.2	1	5.8	5	450	2.9	0.7	2.5	41	5	6	60	2.1	17	0.5	1.7	1.6	12	25
29	NAG96-656 NAG96-668	till	119.856600	54.223833 54.189267	0.2	1	7.2	15 1	700 940	0.7	1.5 0.4	2.5	39 59	14 8	13	71 68	2.7	21	0.5	2.3	1.8 2.4	8	25 25
41	NAG96-674	till	119.928333	54.365000	0.9	nd	nd	nd	nd	nd	0.8	nd	nd	15	nd	nd	nd	33	nd	4.4	nd	nd	nd
43	NAG96-676	till	119.805000	54.436667	0.1	1	9.3	1	940	0.3	0.5	2.5	45	8	9	66	3.8	23	0.5	3.1	2.4	7	25
45 46	NAG96-678 NAG96-679	till	119.767556	54.498972 54.705417	0.1 0.1	1	7.7 8,4	1 4	820 1100	0.6 0.7	0.5 0.4	2.5 2.5	50 52	8 17	8 19	65 110	3.4 4.1	21 29	0.5 0.5	2.9 3,8	2.3 3.4	8 6	25 25
50	NAG96-683	till	119.807417	54.903383	0.1	1	12.0	5	950	1.5	0.3	2.5	73	12	12	110	6.4	29	1.0	3.7	3.4	6	25
52	NAG96-685	till	118.745167	54.587833	0.1	1	10.0	8	860	1.3	0.2	2.5	67	13	17	91	5.3	27	0.5	3.7	3.2	6	25
53 54	NAG96-686 NAT96-159	till	118.145889 118.168241	54.747556 54.575267	0.1	1	13.0 9.2	4	930 770	0.6	0.3	2.5	71 62	12	15 14	94 97	5.5 5.1	28	1.0 1.0	4.5 3.7	3.9	6	25 25
57	NAT96-172	till	119.228611	53.940980	0.2	1	8.8	5	930	0.3	0.5	2.5	71	11	12	110	5.3	26	1.0	3.2	2.8	10	25
58	NAT96-173	till +ill	119.139549	54.125253	0.1	1	11.0	7	1400	0.8	0.1	2.5	63 55	15	16	110	5.0	32	0.5	3.3	3.2	7	25
60	NAT96-175	till	119.050955	54.085940	0.1	1	8.7	3	870	0.8	0.6	2.5	47	15	16	81	2.7	25	0.5	2.7	2.3	9	25
61	NAT96-176	till	118.826409	54.176227	0.1	1	6.4	1	650	1.3	0.2	2.5	62	9	10	82	4.7	19	0.5	2.6	2.3	7	25
62	NAT96-177	till +ill	118.646324	54.228147 54 349903	0.1	1	5.9 6 9	1	690 820	0.9	0.4	2.5	57 60	9 10	11	80 83	4.6	19 18	0.5	3.0	2.5	7	25 25
64	NAT96-179	till	118.650834	54.463445	0.3	1	8.4	3	1000	0.5	0.3	2.5	56	10	12	67	3.3	15	1.0	2.5	2.0	9	25
65	NAT96-180	till	118.915042	54.484814	0.2	1	7.1	2	895	1.5	0.1	2.5	64	10	9	84	4.3	23	1.0	3.1	2.6	6	25
66 67	NAT96-181	till +ill	118.998010	54.348990	0.1	1	6.8	1	700	1.3	0.2	2.5	65 62	9	8	78	4.8	18	1.0	2.6	2.2	5	25
68	NAT96-183	till	119.004013	54.966339	0.1	1	9.4	1	940	1.3	0.2	2.5	65	15	19	93	4.9	29	1.0	3.8	3.0	6	25
69	NAT96-184	till	119.375866	54.847095	0.1	1	8.2	1	1100	0.3	0.3	2.5	57	15	14	92	5.1	33	1.0	3.9	3.3	5	25
70	NAT96-185	till +ill	119.829509	54.616762	0.1	1	7.4	4	780	1.6	1.4	2.5	52	10	14	79	4.0	24	1.0	2.6	2.2	6	25
72	NAT96-187	till	119.611723	54.741571	0.1	1	8.4	12	1100	1.0	0.2	2.5	52	12	14	78	3.7	29	0.5	3.4	2.0	5	25
73	NAT96-188	till	118.624068	54.002461	0.1	1	6.9	5	630	1.2	0.2	2.5	66	10	12	61	4.3	21	1.0	3.2	2.6	8	25
74	NAT96-189	till +ill	118.598083	54.032528	0.1	1	6.2	7	680 750	1.2	0.1	2.5	81 72	9	10	77 94	4.3	21 20	0.5	2.5	3.1	11	25 25
76	NAT96-191	till	118.516500	54.129667	0.1	1	8.5	3	730	1.1	0.4	2.5	68	10	11	75	4.6	17	0.5	3.2	2.5	7	25
77	NAT96-192	till	118.424278	54.206250	0.1	1	8.1	5	910	1.2	0.3	2.5	62	10	11	73	4.3	17	0.5	3.0	2.3	8	25
78	NAT96-193	till +ill	118.384500	54.294278	0.1	1	6.8	4	850	0.9	0.2	2.5	76 67	9	11	82	3.8	15	0.5	2.9	2.4	11	25
80	NAT96-195	till	118.223667	54.469550	0.2	1	8.5	13	930	0.8	0.2	2.5	68	13	16	93	5.3	24	0.5	3.4	3.2	7	25
81	NAT96-196	till	119.074500	54.424250	0.2	nd	nd	nd	nd	nd	0.3	nd	nd	12	nd	nd	nd	18	nd	2.6	nd	nd	nd
82	NAT96-197	till	118.090833	54.576417 54.938170	0.2	1	12.0	5	960 1050	1.6	0.1	2.5	70 69	12	16 19	110	5.7	28 32	0.5	4.1	3.5	7	25 25
84	NAT96-199	till	119.807417	54.903383	0.1	1	9.1	5	1200	0.6	0.1	2.5	59	16	18	110	4.9	30	1.0	3.6	3.6	5	25
85	NAT96-200	till	118.859667	54.554000	0.2	1	9.5	3	850	1.3	0.1	2.5	63	13	15	98	5.4	27	0.5	3.4	3.1	6	25
86 87	NAT96-201 NAT96-210	till	118.135167	54.632167 54.437933	0.2	2	11.0 40.0	4	870 720	1.1	0.1	2.5	63 77	13 11	15 12	96 80	5.5 5.2	28 22	1.0	3.6 3.0	3.2	6 7	25 25
88	NAT96-211	till	119.393983	54.369200	0.1	1	7.7	5	880	0.7	0.2	2.5	71	11	14	84	3.8	25	1.0	3.2	3.2	8	25
89	NAT96-212	till	119.789800	54.922450	0.1	1	8.3	1	990	0.9	0.3	2.5	51	11	13	94	3.8	26	0.5	3.3	2.9	5	25
90 91	NA196-213 NAT96-214	till	119.941967	54.776833 54.152883	0.2	1	7.8 5.5	1	920 670	1.1 0.3	0.3	2.5	52 46	11	13	85 65	2.9	24 19	0.5	3.0	2.8	6	25 25
92	NAT96-215	till	119.846467	54.277833	0.3	1	7.5	6	890	0.3	0.8	2.5	57	10	11	88	5.0	24	1.0	3.1	2.5	8	25
93	NAT97-217	till	118.578166	54.721016	0.4	1	11.0	1	820	1.9	0.3	2.5	72	12	12	76	5.7	32	1	2.9	3.1	6	25
94 95	NAT97-218 NAT97-219	till	119.070150	54.385466	0.3	1	7.4 10.0	4	880	1.2 1.8	0.4	∠.5 2.5	75 74	9 11	13	76	3.4 4.2	20 28	0.5 1	2.2 2.6	2.3 2.7	5	25 25
96	NAT97-220	till	118.792833	54.700433	0.4	1	6.7	4	800	0.7	0.3	2.5	77	11	11	75	5	29	0.5	2.5	2.7	6	25
97	NAT97-221 NAT97-222	till till	118.942233 118.304550	54.805633 54.793400	0.3	1	9.3 17 0	2 4	750 1300	2.4	0.3	2.5	63 81	12 13	10 14	79 120	4.8 5 9	33 38	0.5	3.2	3 ⊿	5	25 25
99	NAT97-223	till	118.242050	54.715566	0.5	1	14.0	1	830	2.3	0.2	2.5	63	14	16	96	5.4	37	1	3.4	3.6	6	25
100	NAG97-687	till	119.507900	54.572100	0.4	1	7.2	1	810	1.2	0.6	2.5	74	12	12	88	5.3	29	1.0	2.6	2.9	7	25
101	NAG97-688	till +ill	119.239050	54.317833 54.687366	0.4	3	8.3 5.5	6 1	870 680	0.8	0.7	2.5	66 74	10	7	53 56	4.2	32 25	0.5	3 24	3	4	25 25
103	NAG97-690	till	119.152800	54.667166	0.4	2	11.0	5	1000	1.5	0.3	2.5	62	18	20	94	3.5	29	0.5	3.3	3.4	6	25
104	NAG97-691	till	118.034783	54.561916	0.5	1	9.1	1	830	1.9	0.1	2.5	71	10	8	93	4.2	28	1	2.6	2.8	10	25
				Count	81	79	79	79	79	79	81	79	79	81	79	79	79	81	79	81	79	79	79
				Average Min	0.19	1.11	9.2	3.8	851 400	1.19	0.31	2.5	63.3 30.0	11.4	12.7	84.4 48.0	4.56	24.5	0.73	3.10	2.80	6.8	25 25
				Max	0.90	4.00	40.0	15.0	1400	2.90	1.50	2.5	90.0	19.0	22.0	120.0	6.40	38.0	2.00	4.50	4.15	12.0	25
				75%ile	0.20	1.00	9.8	5.0	930	1.50	0.40	2.5	71.0	13.0	15.0	93.0	5.20	28.0	1.00	3.40	3.10	8.0	25
				95% ile	0.40	2.00	14.3	8.3	1110	2.36	U.70	2.5	/7.0	16.0	19.0	110.0	6.01	33.0	1.00	4.10	3.60	10.0	25
OTHER	SAMPLES																						
Short ID	Field sample #	Lithology	Long original	Lat original	<u>.</u>	,	0.1	6	000	4.2	4.5	0.5	(7	40	40	05	0.0	00	0.5	0.5	0.0	42	lr.
1 2	NAG96-581 NAG96-582	colluvium?	119.066233 119.098551	54.010650 54.099858	0.1 0.2	1 1	ช.4 10.0	9 7	660 890	1.3 1.2	1.4 0.3	2.5 2.5	47 54	10 10	12 12	65 97	2.8 2.7	36 28	0.5 0.5	2.5 2.6	2.3 2.7	12 14	25 25
6	NAG96-586	sand	119.186633	54.872360	0.1	1	10.0	1	970	0.9	0.1	2.5	52	15	16	110	3.0	27	1.0	3.6	3.2	6	25
55	NAT96-170	diamicton	119.360977	54.079487	0.3	1	10.0	6	1100	2.9	0.7	2.5	78	13	17	130	6.4	36	0.5	3.0	3.1	9	25
56 20	NAT96-171	diamicton	119.317378	54.087764	0.2	1	11.0	7	980 880	1.2	2.0	2.5	44 40	17 17	22	89 140	2.9	35 19	0.5	2.9	2.8	12 3	25 25
38	NAG96-671	silty clav	119.176967	54.292167	0.1	1	5.2 7.9	1	1100	0.3	0.2	2.5 2.5	40 48	11	10	100	5.2	27	1.0	3.7	2.7	7	25 25
40	NAG96-673	s&g	119.368250	54.250017	0.1	1	9.2	4	770	1.0	0.6	2.5	42	8	8	81	2.9	21	0.5	2.9	2.2	18	25
48	NAG96-681	gravel	119.454200	54.938250	0.1	1	6.8	36	2400	0.3	0.5	2.5	54	9	11	110	2.9	14	1.0	2.8	2.5	12	25
49 51	NAG96-682 NAG96-684	pentonite fluvial	119.454200 119.995950	54.938250 54.738600	0.1 0.1	1	3.0 8.2	1 17	540 1000	0.6 0.3	0.2 0.2	2.5 2.5	80 56	3 12	3 16	10 120	ы.0 4.1	17 26	0.5 0.5	3.4 3.1	3.3 3.0	8 8	25 25

All values below detection limit are shown as 1/2 of detection limit and = no data AA= atomic absorption spectrometry NA = instrumental neutron activation analysis

Appendix 1, part 2. Geochemical and related data from surface samples discussed in this report

Eler Met Dete TIL	ment hod ection	Limit ILY	La NA 2 ppm	Li AA 1.0 ppm	Lu NA 0.2 ppm	Mg AA 0.01%	Mn AA 5 ppm	Mo AA 2 ppm	Mo NA 1 ppm	Na NA 0.02%	Ni AA 2 ppm	Ni NA 10 ppm	Pb AA 2 ppm	Rb NA 5 ppm	Sb NA 0.1 ppn	Sc NA 1 0.2 ppm	Se NA 5 ppm	Sm NA 0.1 ppm	Sn NA 100 ppr	Ta NA r 0.5 ppr	Tb NA n 0.5 ppr	Te NA n 10 ppm	Th NA 0.2 ppr	U NA 1 0.2 ppm	V AA/Tota 5 ppm	W NA 1 ppm	Yb NA 1 ppm
Sho	3 4	till till	/ 31 31	11 12	0.3 0.2	nd nd	489 329	4 4	0.5 0.5	0.2 0.8	28 30	53 31	16 18	71 61	0.9 0.9	8.4 10.0	2.5 2.5	4.5 4.5	50 50	1.0 1.0	0.9 0.3	5 5	10.0 11.0	3.6 3.2	78 86	0.5 0.5	3 2
	5 7 8	till till till	33 29 30	17 12 23	0.3 0.2 0.3	nd nd nd	286 503 235	3 4 4	0.5 0.5 1.0	0.5 0.7 0.4	31 39 38	47 36 58	16 18 15	74 75 82	1.0 1.2 1.0	11.0 12.0 13.0	2.5 2.5 2.5	4.9 4.2 4.8	50 50 50	0.8 0.9 1.3	0.6 0.6 0.8	5 5 5	10.0 9.3 9.1	3.4 3.0 3.7	94 104 143	0.5 0.5 0.5	2 2 2
	9 10	till till	38 37	16 15	0.3	nd nd	309 382	3	0.5	0.2	33 29	31 48	17 16	90 84	1.1 0.9	11.0 11.0	2.5 2.5	5.2 5.4	50 50	1.0 1.1	0.8 0.8	5	12.0 12.0	3.0 3.2	97 88	0.5 1.0	2
	12	till till	20 31 48	10 11 16	0.2	nd nd	443 303 216	4	0.5	0.1	22 23 26	24 23 29	12	70 76 100	0.5 1.4 1.0	8.1 13.0	2.5 2.5 2.5	3.7 4.6 8.4	50 50	0.7	0.5	5	7.9 10.0 14.0	2.5	79 72 84	0.5	2
	14 15	till	35 34	13 19	0.3	nd nd	303	3	0.5	0.5	25 38	41	19 18	79	1.4	11.0 13.0	2.5	5.1 5.3	50 50	1.3	0.9	5	12.0	3.2 2.9	83 112	0.5	3
	16 17	till till	37 37	16 15	0.3 0.3	nd nd	227 197	3 4	0.5 0.5	0.3 0.2	29 29	30 5	19 17	100 87	1.3 1.2	12.0 10.0	2.5 2.5	5.1 5.4	50 50	1.0 0.9	0.8 1.0	5 5	13.0 12.0	3.7 3.9	111 100	1.0 0.5	2 3
	18 19	till till	35 33	19 19	0.3 0.5	nd nd	460 450	5 5	0.5 0.5	0.5 0.5	37 35	5 35	18 16	93 78	0.9 0.8	12.0 12.0	2.5 2.5	5.6 5.2	50 50	0.8 1.0	0.3 0.8	5 5	10.0 10.0	2.8 2.9	99 93	0.5 0.8	3 3
2	21 22	till till	35 36	14 12	0.3 0.3	nd nd	249 302	4 5	0.5 0.5	0.3 0.3	28 29	39 23	14 16	86 81	1.0 1.1	11.0 10.0	2.5 2.5	4.9 4.7	50 50	1.0 0.8	0.9 0.7	5 5	11.0 11.0	3.5 3.4	110 99	0.5 0.5	2 3
2	23 24	till till	37 35	9 13	0.1	nd nd	181 285	3	0.5	0.3	19 31	34 35	11 15	100 77 70	1.4 1.2	12.0 11.0	2.5 2.5	5.1 5.1	50 50	1.2	0.7	5	12.0 10.0	3.7 3.5	70 109	1.0 0.5	2
2	25 26 27	till till	26 26 23	14 11 9	0.1	nd nd	436 298	5 4 3	0.5	0.9	32 34 24	40 24 43	14 13 9	69 42	1.1	11.5 11.0 7.0	2.5 2.5 2.5	4.4 4.2 4.1	50 50	1.0	0.7	5	0.0 8.2 7.1	3.3 3.1 3.3	81 74	0.5	2
1	29 35	till till	22 32	10 12	0.1 0.1	nd nd	495 302	5 5	0.5 0.5	0.2 0.4	43 21	40 5	12 14	55 81	1.2 1.0	7.6 9.0	2.5 2.5	3.7 4.7	50 50	0.9	0.3	5 5	6.3 10.0	3.6 3.2	101 83	0.5 0.5	2
4	41 43	till till	nd 25	19 16	nd 0.1	nd nd	270 226	5 4	nd 0.5	nd 0.4	37 26	nd 5	20 14	nd 65	nd 0.9	nd 9.1	nd 2.5	nd 4.4	nd 50	nd 1.0	nd 0.7	nd 5	nd 8.6	nd 3.7	110 92	nd 0.5	nd 2
4	45 46	till till	26 28	13 13	0.1 0.1	nd nd	276 588	4 4	0.5 0.5	0.4 1.0	26 40	26 47	11 16	62 73	0.9 1.2	8.8 13.0	2.5 2.5	4.4 4.6	50 50	1.0 1.0	0.9 0.8	5 5	8.7 9.4	3.5 3.7	87 95	0.5 0.5	2 2
5	50 52	till	37 35	22 19	0.2 0.1	nd nd	273 422	5	0.5 0.5	0.6 0.6	36 33	44 27	20 14	100 90	0.9 0.9	15.0 13.0	2.5 2.5	5.3 5.1	50 50	0.9 1.0	0.7 0.7	5	11.0 11.0	4.3 3.8	114 97	1.0 0.5	2 3
5	53 54 57	till till	35 34 34	21 22 21	0.1	nd nd	285 326	4	1.0 0.5	0.6	36 33 26	50 29	15 15 12	90 100 84	1.0 0.9	15.0 12.0	2.5	5.2 5.2	50 50	1.0 1.3	0.9	5	10.0 10.0	4.3	114 104 128	2.0	3
5	58 59	till	34 33 29	13	0.1	nd nd	479 313	4 5 4	0.5	0.4 1.0 1.1	39 37	5 47	19 16	86 79	1.2 1.2	14.0 14.0	2.5 2.5	5.1 4.4	50 50	0.9	0.9	5	11.0 10.0	4.0	103	0.5	3
6	60 61	till till	24 35	10 13	0.1 0.1	nd nd	372 293	3 4	0.5 0.5	1.1 0.2	29 25	33 36	14 15	53 86	1.1 0.9	9.1 10.0	2.5 2.5	4.2 4.8	50 50	1.0 1.2	0.6 0.7	5 5	7.7 11.0	3.6 3.5	66 94	0.5 1.0	3 2
e f	62 63	till till	35 34	14 14	0.1 0.1	nd nd	310 289	4 5	0.5 0.5	0.2 0.2	26 24	33 34	15 15	93 100	0.9 1.1	10.0 9.4	2.5 2.5	4.7 4.7	50 50	1.1 0.9	0.7 0.8	5 5	11.0 11.0	3.1 3.3	102 101	0.5 0.5	2 2
6	64 65	till till	33 36	12 15	0.1 0.1	nd nd	361 264	4 5	0.5 0.5	0.4 0.4	25 31	23 28	14 15	73 81	1.1 1.1	8.5 11.0	2.5 2.5	4.8 5.1	50 50	1.2 1.1	0.8 0.8	5 5	10.0 11.5	3.8 3.4	77 95	1.0 0.8	3 2
6	66 67	till till	36 35	14 15	0.1	nd nd	267 264	4 5	0.5	0.2	26 29	32 42	16 15	94 85	0.9	10.0 11.0	2.5 2.5	4.7 4.7	50 50	1.4	0.8 0.8	5	11.0 11.0	3.2 3.3	104 99	0.5 2.0	3
6	69 70	till till	32 31 27	16 14 11	0.2	nd nd	382 338	5 6 6	0.5	0.7	41	5 23	16 14 12	88 71	1.0	12.0 13.0 10.0	2.5 2.5 2.5	4.0 4.5 4.3	50 50	1.1	0.6	5	9.4 10.0 8.2	3.0 3.3 3.2	115 116 115	0.5	2
	71 72	till till	27 29	12 13	0.1 0.1	nd nd	490 342	4	0.5 0.5	1.0 1.3	33 32	55 38	13 14	70 75	1.1 1.1	11.0 11.0	2.5 2.5	4.2 4.5	50 50	0.7	0.5 0.8	5 5	8.3 8.7	3.0 3.3	85 80	1.0 0.5	2
1	73 74	till till	35 39	13 16	0.2 0.3	nd nd	364 213	4 3	0.5 0.5	0.4 0.3	27 28	24 19	14 14	82 85	0.9 0.9	11.0 12.0	2.5 2.5	4.8 6.8	50 50	1.0 1.1	0.7 1.0	5 5	10.0 12.0	3.2 3.8	95 92	1.0 0.5	3 4
1	75 76	till till	39 36	15 13	0.1 0.2	nd nd	303 284	4 5	0.5 0.5	0.3 0.3	31 26	43 31	16 15	120 89	1.0 1.1	11.0 10.0	2.5 2.5	5.3 5.0	50 50	1.0 0.8	0.9 0.9	5 5	12.0 12.0	3.1 3.1	104 91	0.5 0.5	2 2
	77 78	till till	35 35	12 11	0.1	nd nd	340 321	4 5	0.5 0.5	0.4	26 25	5 31	15 14	96 84	1.1 1.0	10.0 9.5	2.5 2.5	4.9 5.0	50 50	1.1 0.9	0.7	5	11.0 12.0	3.3 3.4	82 71	1.0 0.5	2 3
8	79 80 81	till fill	35 35	12 17 13	0.2 0.1	nd nd	305 416 326	4 5 4	0.5 0.5	0.3 0.5	25 34 31	28 34 nd	14 16 17	89 100 pd	0.9 1.0	10.0 12.0	2.5 2.5	4.8 5.2	50 50	0.9 1.0	0.6 0.7	5 5	11.0 12.0	3.3 3.7	89 108 97	1.0 1.0	2 2
8	82 83	till	34	20	0.3	nd	333 549	4	0.5	0.6	31 42	37	18	97 101	1.0	13.0 14.0	2.5	5.4	50 50	1.0	0.8	5	11.0	3.2	107 121	1.0	3
8	84 85	till till	31 34	15 21	0.1	nd nd	343 328	3 4	0.5 0.5	1.0 0.6	38 35	58 41	15 16	83 91	1.1 0.9	15.0 13.0	2.5 2.5	4.7 5.0	50 50	1.2 1.2	0.6	5 5	10.0 10.0	4.0 3.8	103 109	1.0 0.5	2
8	86 87	till till	34 40	21 16	0.2 0.3	nd nd	348 285	3 4	0.5 0.5	0.6 0.2	34 32	35 35	15 18	97 110	0.9 1.3	13.0 12.0	2.5 2.5	5.1 5.4	50 50	1.2 1.0	1.0 0.6	5 5	10.0 13.0	3.5 3.6	104 113	0.5 0.5	2 3
8	88 89	till	37 30	12 14	0.4 0.1	nd nd	500 357	3	0.5 0.5	0.3 0.8	34 32	45 36	16 14	88 77	1.2 1.0	12.0 12.0	2.5 2.5	6.5 4.6	50 50	1.0 1.1	1.1 0.8	5	11.0 10.0	3.3 3.9	93 97	1.0 0.5	3
9	90 91 92	till till	28 25 21	12 11 17	0.2	nd nd	396 262	4 5	0.5	0.9	28 24 20	34 30 21	13 10 12	67 61 77	1.0 0.9	11.0 7.9	2.5	4.3	50 50	0.6	0.6	5	8.4 7.0	3.3	85 98	0.5	2
9	92 93 94	till till	30 31	33 27	0.2	1.25	247 304 208	5 6 3	0.5 1 0.5	0.36	30 34 29	41 34	18 18	88 88	1.1	11	2.5 2.5 2.5	4.0 5.7 5.5	50 50	0.8	0.7 1 0.8	5 5	9.0 11 11	3.7 31	104 120 99	0.5	1
9	95 96	till till	31 33	28 32	0.2 0.2	1.32 1.34	240 238	4	0.5 0.5	0.28 0.4	33 36	40 43	17 16	96 110	1.2 1.1	11 12	2.5 2.5	5.7 5.7	50 50	0.9 1.1	0.25	5 5	12 12	3.6 3.6	110 107	0.5 1	0.5 1
ę	97 98	till till	31 30	34 37	0.3 0.3	1.19 0.97	371 280	3 5	0.5 1	0.46 0.48	38 42	27 46	15 18	84 92	0.9 1.3	12 13	2.5 2.5	5.7 6.2	50 50	1 0.9	0.5 0.7	5 5	11 12	3.1 3.7	114 130	0.5 1	1 1
1	99 100	till till	30 32	35 28	0.3	1.12	285 247	2 3	0.5 0.5	0.52	39 33	34 43	15 18	94 100	1.1 1.5	13 11.0	2.5 2.5	6 5.8	50 50	1.1	0.7	5 5	11 13	3.4 4.0	119 121	0.5	1
1	02	till till	28 31 24	33 25 30	0.1	1.54 1.55 1.37	145 150 163	5 2 3	0.5	0.37	32 26 37	29 5 38	14 16 15	96 94 84	1.1 1 12	12 11 11	2.5 2.5 2.5	5.3 5.4 4.7	50 50 50	0.8	0.7	5 5	10	3.5 3.2 3.2	95 102	0.5 1 0.5	1
1	04	till	29	34	0.2	1.08	195	2	0.5	0.57	31	28	16	83	0.9	11	2.5	5.6	50	0.7	0.6	5	10	3	98	2	1
Cou Ave	unt erage		79 32.4	81 17.1	79 0.19	12 1.27	81 326	81 4.02	79 0.53	79 0.49	81 31.5	79 33.1	81 15.4	79 84.2	79 1.05	79 11.2	79 2.50	79 5.01	79 50	79 1.01	79 0.71	79 5.00	79 10.4	79 3.43	81 099	79 0.71	79 2.17
Ma: 75%	x %ile		48.0 35.0	9.0 37.0 20.0	0.10	1.55 1.35	588 371	6.00 5.00	0.50 1.00 0.50	0.14 1.30 0.57	43.0 36.0	59.0 41.0	20.0 17.0	42.0 120.0 93.5	1.50 1.10	15.0 12.0	2.50 2.50 2.50	8.40 5.30	50 50	1.40	0.25 1.30 0.80	5.00 5.00	14.0 11.0	2.50 5.10 3.70	143 109	2.00	4.00 3.00
95%	% ile		38.1	33.0	0.40	1.54	503	5.00	0.77	1.00	41.0	53.2	19.0	100.1	1.31	14.0	2.50	6.02	50	1.30	1.00	5.00	12.1	4.01	121	1.00	3.00
OT Shc			TYPE	3	Lu	Ma	Mn	Мо	Мо	Na	Ni	Ni	Pb	Rb	Sb	Sc	Se	Sm	Sn	Та	ТЬ	Те	Th	U	v	w	Yb
	HER S	Litholog	La	LI	Lu	ing					07	26	12	49	4.0	10.5	2.5	4.0	50	0.9	0.7	5	7.4	0.4			
1	HER S	Colluvium	La 22 26	11	0.1	nd	437 328	5 3	0.8	0.8	29	52	15	61	1.2	11.0	2.5	4.6	50	1.3	1.0	5	8.6	3.1	74 66	0.8	3
	HER \$	colluvium colluvium diamictor diamictor	La 22 26 40 26 20	11 11 20 10	0.1 0.3 0.1 0.1	nd nd nd nd	437 328 300 656	5 3 4 5	0.8 0.5 0.5 0.5	0.8 1.0 0.4 0.6	27 29 45 44	52 60 60	13 15 17 14	61 100 58	1.2 1.2 1.7 1.5	10.5 11.0 16.0 13.0	2.5 2.5 2.5 2.5	4.0 4.6 5.6 4.5	50 50 50 50	1.3 1.3 1.2	0.7 1.0 0.9 0.8	5 5 5	7.1 8.6 11.0 7.2	3.1 3.8 4.6 3.6	74 66 141 96	0.8 1.0 1.0 1.0	3333
2	HER S ort ID 2 0 55 0 56 0 6 20 38	colluvium colluvium diamictor diamictor sand ss silty clav	La 22 26 40 26 28 23 30	11 11 20 10 12 10 18	0.1 0.3 0.1 0.1 0.3 0.2 0.1	nd nd nd nd nd nd	437 328 300 656 501 2300 367	5 3 4 5 3 6 5	0.8 0.5 0.5 0.5 0.5 0.5	0.8 1.0 0.4 0.6 1.2 1.4 0.4	27 29 45 44 38 42 35	52 60 61 54 44	13 15 17 14 18 8 13	40 61 100 58 64 41 91	1.2 1.7 1.5 1.2 0.5 1.0	10.3 11.0 16.0 13.0 12.0 17.0 11.0	2.5 2.5 2.5 2.5 2.5 2.5 2.5	4.0 4.6 5.6 4.5 4.5 3.4 4.8	50 50 50 50 50 50	1.3 1.3 1.2 1.0 0.6 1.0	0.7 1.0 0.9 0.8 0.7 0.3 0.9	5 5 5 5 5 5 5	7.1 8.6 11.0 7.2 9.3 5.1 10.0	3.1 3.8 4.6 3.6 3.2 1.7 4.0	74 66 141 96 79 102 120	0.8 1.0 1.0 1.0 1.0 0.5 0.5	3 3 3 2 1 2
	HER 5 ort ID il 1 c 2 c 55 c 56 c 6 20 38 40 48	Litholog colluvium diamictor diamictor sand ss silty clay s&g gravel	La 22 26 40 26 28 23 30 22 27	11 11 20 10 12 10 18 12 12 11	0.1 0.3 0.1 0.1 0.3 0.2 0.1 0.2 0.1	nd nd nd nd nd nd nd nd nd nd	437 328 300 656 501 2300 367 326 2100	5 3 4 5 3 6 5 4 3	0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.8 1.0 0.4 0.6 1.2 1.4 0.4 0.4 1.1	27 29 45 44 38 42 35 25 29	52 60 61 54 44 28 33	15 17 14 18 8 13 13 8	48 61 100 58 64 41 91 55 52	1.2 1.7 1.5 1.2 0.5 1.0 0.9 0.8	10.3 11.0 16.0 13.0 12.0 17.0 11.0 8.0 10.0	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	4.0 4.6 5.6 4.5 3.4 4.8 4.3 4.3	50 50 50 50 50 50 50 50 50	1.3 1.3 1.2 1.0 0.6 1.0 1.0 0.8	0.7 1.0 0.9 0.8 0.7 0.3 0.9 0.7 0.6	5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.1 8.6 11.0 7.2 9.3 5.1 10.0 7.9 8.9	3.1 3.8 4.6 3.6 3.2 1.7 4.0 4.1 3.7	74 66 141 96 79 102 120 75 63	0.8 1.0 1.0 1.0 0.5 0.5 0.5 1.0	3 3 3 2 1 2 2 3

All values below detection limit are shown as 1/2 of detection limit and = no data AA= atomic absorption spectrometry NA = instrumental neutron activation analysis

Element		Zn	Zn	Zr	Wt	Lab Tex	Lab Tex	Lab Tex	Lab Tex	Lab Tex	Lab Tex	Lab Tex	Chittick	Chittick	Chittick	Chittick	Chittick	Chittick	ieldMeasur	Field Text	Field Text	Field Text		
Method		AA/Tota	NA	NA									Calcite	Total	Calcite	Dolomite	Total	Cct/Dmt	Reaction				Samp	ole
Detection	nLimit	2 ppm	100 ppn	200 ppn	n	Sand	Sand	Silt	Clay	Sand	Silt	Clay		Carbonate	•	0	Carbonate	Ratio	with HCI	Sand %	Silt%	Clay%	Depth	m
Short ID :	Litholog	IV.			c	% 1-2mr	r (>63)	(<63)	(<4)	(>50)	(<50)	(<2)	ml/a)	ml/am	%	%	%			(>63)	(<63)	(<4)	From	То
3	till	90	50	350	11.85	5.5	31.0	32.5	36.5	33.0	38.6	28.4	12.1	33.1	5.4	8.6	14.10	0.63	4	25	15	40	15.0	15.5
4	till	88	50	100	10.01	0.7	22.7	33.4	43.9	24.6	44.8	30.6	11.0	24.5	4.9	5.6	10.50	0.89	4	20	50	30	1.8	2.0
5	till	112	50	100	7.68	1.2	22.7	40.5	36.8	24.0	49.9	26.1	8.4	28.0	3.8	8.1	11.80	0.46	4	5	35	60	1.5	1.8
7	till	110	50	100	9.11	0.7	25.9	49.6	24.5	28.2	54.2	17.6	12.8	25.4	5.7	5.2	10.90	1.11	4	20	50	30	3.0	3.5
8	till	156	160	390	7.98	7.2	32.7	41.2	26.1	35.4	45.1	19.5	4.3	18.5	1.9	5.8	7.80	0.34	4	30	30	40	3.0	4.0
9	till +ill	111	50	100	8.95	1.3	18.5	45.6	35.9	21.0	50.1	28.9	13.1	30.8	5.9	7.3	13.20	0.81	4	5 20	60	25	2.0	2.5
10	till	90 78	50	100	9.90	1.4	20.0	40.0	33.7	16.7	60.3	23.0	12.4 59.4	88.2	26.6	11.0	38.45	2.25	3,4	20	55	25	0.5	0.8
12	till	84	50	370	10.68	1.6	20.0	58.5	21.5	23.2	64.3	12.5	20.5	43.2	9.2	9.3	18.50	0.99	4	15	55	30	0.6	1.0
13	till	105	50	550	12.64	0.2	14.9	47.3	37.8	17.0	55.0	28.0	1.7	8.1	0.8	2.6	3.40	0.29	3	10	40	50	1.1	1.3
14	till	96	50	330	12.67	0.2	28.9	53.7	17.4	32.6	55.3	12.1	4.2	18.7	1.9	6.0	7.80	0.32	2	25	65	10	1.3	1.5
15	till	107	50	100	11.89	1.6	35.5	31.4	33.1	36.9	38.6	24.5	5.9	18.3	2.7	5.1	7.70	0.54	4	15	50	35	2.5	3.0
16	till	124	50	100	10.72	1.1	12.0	46.5	41.5	13.7	56.9	29.4	2.5	12.8	1.1	4.2	5.30	0.27	1	10	40	50	1.2	1.5
17	till	112	50	100	8.75	1.5	26.8	45.0	28.2	29.3	50.2	20.5	1.9	12.8	0.8	4.5	5.30	0.19	1	30	40	30	1.0	1.2
18	till	95	50	390	10.99	1.3	31.3	37.7	31.0	33.0	44.6	22.4	4.7	14.9	2.1	4.2	6.30	0.50	3	15	45	40	2.0	2.2
19	till	92	50	100	12.59	1.2	31.9	34.7	33.4	33.5	41.1	25.4	9.8	26.3	4.4	6.8	11.20	0.65	3,4	15	40	45	1.2	1.5
21	till +ill	85	50	100	12.00	0.7	14.0	49.3	30.7	15.4	59.1 46.9	25.5	13.7	32.0	5.2	10.4	15.70	0.81	4	10	50 40	40	10	10
22	till	58	50	490	10.33	2.3	16.7	60.0	23.3	18.5	64.0	17.5	87	23.3	3.9	6.0	9.90	0.51	4	10	50	40	2.5	3.0
24	till	110	50	100	10.65	1.3	13.1	58.2	28.7	14.8	66.7	18.5	4.9	17.4	2.2	5.1	7.30	0.44	4	10	60	30	2.8	3.0
25	till	93	50	100	11.96	2.1	30.1	44.3	25.6	33.0	48.5	18.5	8.6	23.0	3.9	5.9	9.80	0.65	4	10	60	30	2.0	2.2
26	till	90	50	100	11.81	1.8	23.1	48.0	28.9	25.8	55.3	18.9	12.4	25.8	5.5	5.5	11.10	1.00	4	10	60	30	1.5	1.6
27	till	93	50	490	14.14	6.5	47.6	45.7	6.7	50.4	46.1	3.5	3.9	25.0	1.8	8.7	10.40	0.20	nd	nd	nd	nd	1.0	1.2
29	till	128	50	230	12.76	12.2	39.5	41.8	18.7	41.6	44.2	14.2	19.1	61.5	8.6	17.5	26.00	0.49	nd	nd	nd	nd	5.0	nd
35	till	90	50	100	10.38	1.5	26.4	46.2	27.4	30.3	50.3	19.4	18.6	43.5	8.3	10.2	18.60	0.82	nd	nd	nd	nd	nd	nd
41	till	181	nd	nd	nd	25.0	49.5	41.8	8.7	50.6	43.7	5.7	3.2	15.5	1.4	5.1	6.50	0.29	nd	nd	nd	nd	nd	nd
43	till	126	50	250	11.77	4.4	25.2	49.6	25.2	28.0	51.8	20.2	5.2	22.8	2.3	1.2	9.60	0.34	na	na	na	na	na	na
40	till	90 97	50	100	12 41	+.0 21	25.3	38.7	20.9 36.0	29.0	-++.3 40 7	30.3	4.2	10.7	4.2 19	27	4.55	0.71	nd	nd	nd	nd	nd	nd
50	till	121	50	330	13.04	0.7	20.1	45.3	34.6	22.3	50.2	27.5	2.8	11.8	1.3	3.7	5.00	0.34	nd	nd	nd	nd	nd	nd
52	till	99	50	100	13.91	1.2	29.1	37.1	33.8	31.7	42.5	25.8	6.4	20.6	2.8	5.9	8.70	0.50	nd	nd	nd	nd	16.5	17.0
53	till	119	50	430	12.77	0.5	22.8	34.9	42.3	24.1	41.1	34.8	3.7	13.3	1.7	4.0	5.60	0.42	nd	nd	nd	nd	1.0	1.2
54	till	98	50	100	12.55	1.2	26.0	35.9	38.1	29.8	37.7	32.5	6.7	20.9	3.0	5.9	8.80	0.52	4	20	50	30	2.0	2.0
57	till	127	50	390	11.06	7.3	27.0	44.7	28.3	28.7	47.4	23.9	4.8	16.8	2.2	4.9	7.10	0.44	4	nd	nd	nd	2.5	3.0
58	till	106	50	100	11.70	3.6	30.6	47.7	21.7	33.4	49.5	17.1	1.9	5.6	0.8	1.5	2.40	0.55	1	15	60	25	1.5	1.8
59	till	96	50	100	11.25	7.0	34.3	40.6	25.1	35.9	42.3	21.8	2.0	7.3	0.9	2.2	3.10	0.40	3	nd	nd	nd	1.5	2.0
60	till +ill	94	50	430	10.02	1.5	41.5	46.9	20.1	45.5	45.8	8.7	5.0	19.2	2.3	5.8	19.50	0.40	4	10	20	5	3.5	4.0
62	till	92	50	310	11 16	1.0	13.3	44.3	42.4	16.0	49.2	35.1	25.2	43.4	11.3	9.0	20.30	1.25	4	10	40	50	1.5	2.0
63	till	90	50	450	9.12	2.3	20.4	41.5	38.1	23.1	45.5	31.4	15.3	39.4	6.9	9.9	16.80	0.69	4	15	25	60	3.0	3.5
64	till	93	50	480	13.13	3.0	34.4	47.9	17.7	38.8	46.3	14.9	10.1	34.7	4.5	10.1	14.65	0.45	4	15	25	60	2.5	3.0
65	till	94	50	235	10.23	1.2	10.2	57.2	32.6	11.8	63.9	24.3	8.5	25.2	3.8	6.9	10.70	0.55	4	15	25	60	1.5	1.8
66	till	94	50	270	10.70	1.8	22.5	51.6	25.9	25.1	53.0	21.9	10.4	33.2	4.7	9.4	14.10	0.50	4	25	25	50	1.3	1.5
67	till	87	50	290	9.95	1.4	16.4	55.5	28.1	19.4	56.7	23.9	11.9	37.4	5.3	10.5	15.80	0.51	4	nd	nd	nd	1.8	2.0
68	till	98	50	100	10.04	0.5	12.6	40.9	46.5	14.3	49.1	36.6	10.7	23.4	4.8	5.2	10.00	0.92	4	20	50	30	2.0	2.3
69	till	105	50	100	8.93	1.5	24.5	42.3	33.2	27.2	46.3	26.5	6.3	16.6	2.8	4.2	7.10	0.67	4	10	30	70	20.0	21.0
70	+:11	07	50	250	10.72	2.4	20.0	43.3	22.9	30.4 41.4	40.1	17.5	6.1	15.2	0.0	2.0	6.50	0.03	4	60	20	20	2.5	3.0
72	till	107	50	100	10.72	1.4	32.7	45.0	24.5	36.7	40.1	13.5	4.5	13.9	2.7	3.9	5.90	0.73	4	30	50	20	3.0	3.5
73	till	91	50	330	11.19	2.0	26.5	45.9	27.6	30.3	47.7	22.0	13.9	32.9	6.3	7.8	14.00	0.80	3.4	15	55	30	1.8	2.3
74	till	90	50	450	10.55	1.1	21.5	39.7	38.8	25.5	41.5	33.0	1.7	3.1	0.8	0.5	1.30	1.41	1,2	20	55	25	0.0	0.5
75	till	103	50	450	9.63	1.3	11.8	53.0	35.2	14.6	57.1	28.3	13.6	31.1	6.1	7.2	13.30	0.84	1,2	15	60	25	0.8	1.2
76	till	91	50	400	13.35	2.1	30.1	35.8	34.1	31.6	39.9	28.5	13.8	32.5	6.2	7.7	13.90	0.80	4	25	45	35	1.3	1.5
77	till	89	50	550	10.97	2.4	21.0	47.3	31.7	24.4	50.4	25.2	14.1	39.3	6.3	10.4	16.70	0.61	4	30	55	15	2.2	2.4
78	till	79	50	100	12.60	1.8	20.7	49.0	30.3	23.2	54.5	22.3	16.9	41.0	7.6	9.9	17.50	0.77	nd	35	55	10	1.7	1.9
79	till	88	50	100	11.25	2.1	18.3	46.6	35.1	21.9	49.6	28.5	18.1	41.2	8.1	9.5	17.60	0.85	4	10	60	30	3.0	3.5
80	till	103	50	100	8.70	0.9	20.1	34.5	45.4	22.3	41.4	36.3	7.1	21.6	3.2	6.0	9.10	0.54	4	10	30	60	2.0	2.5
82	till	106	nu 50	280	13.63	1.0	24.0	31.6	40.6	27.4	42.5	32.6	5.0	25.5	2.0	4.5	6 70	0.30	3	15	40	45	2.4	2.0
02	+11	120	50	100	10.00	1.0	21.0	25.7	42.7	24.0	41.0	25.0	2.5	12.1	1.6	2.5	5 10	0.00	2	20	25	45	2.0	2.5
84	till	104	50	400	12.36	1.0	32.4	26.7	40.9	34.7	34.0	31.3	4.5	10.8	2.0	2.6	4 60	0.40	2	20	40	40	4	4.5
85	till	101	50	100	11.08	1.3	29.4	32.9	37.7	31.9	38.5	29.6	5.9	19.1	2.7	5.5	8.10	0.50	2	15	40	45	3.3	3.5
86	till	100	50	310	10.75	1.2	25.3	33.0	41.7	27.3	39.4	33.3	5.3	17.6	2.4	5.0	7.40	0.48	nd	nd	nd	nd	nd	nd
87	till	113	50	100	11.22	2.9	19.5	48.4	32.1	22.1	55.2	22.7	3.2	18.4	1.5	6.2	7.70	0.24	1	10	50	40	1.0	1.2
88	till	103	50	390	11.71	1.9	37.7	31.7	30.6	40.4	36.4	23.2	2.5	6.4	1.1	1.6	2.70	0.68	1	30	50	20	3.0	3.5
89	till	101	50	100	11.40	1.8	23.7	37.7	38.6	26.4	47.9	25.7	9.2	24.4	4.1	6.3	10.40	0.65	4	10	60	30	2.5	2.8
90	till	91	50	370	12.99	2.1	28.8	44.0	27.2	32.1	49	18.9	7.2	23.1	3.2	6.6	9.80	0.50	4	10	60	30	2.5	2.8
91	till	92	50	100	12.24	1.3	13.9	49.3	30.8	17.8	54.2	28.0	24.8	04.9 20.6	11.1	10.5	27.60	0.67	4	na	na	na	2.0	2.3
92	till	111	50	100	9.32	0.7	21.7	35.8	42.5	24.4	43.3	32.3	6.5	21.5	2.4	6.2	9.10	0.24	4	25	25	50	19	2.0
94	till	112	50	100	8.17	0.5	12.5	52.6	34.9	16.0	58.7	25.3	8.2	28.6	3.7	8.4	12.10	0.44	4	20	30	50	1.8	2.0
95	till	127	50	100	9.73	2.3	22.3	47.0	30.7	24.8	53.3	21.9	5.0	21.4	2.3	6.8	9.00	0.35	4	30	20	50	3.5	4.0
96	till	116	50	100	11.35	1.2	16.4	38.1	45.5	19.5	45.3	35.2	8.0	24.8	3.6	6.9	10.50	0.52	4	15	50	35	3.0	3.5
97	till	103	50	100	9.73	0.6	14.6	32.2	53.2	16.2	44.6	39.2	15.4	29.4	6.9	5.8	12.65	1.20	4	20	50	30	1.0	1.5
98	till	122	50	100	10.42	1.1	25.0	34.2	40.8	27.5	39.9	32.6	3.6	12.3	1.6	3.6	5.20	0.44	3	25	40	35	2.0	2.5
99	till	119	50	100	9.92	0.9	26.0	32.9	41.1	28.3	38.2	33.5	2.8	9.8	1.3	2.9	4.20	0.44	4	20	50	30	3.0	3.5
100	till	133	50	425	10.7	2.4	14.0	52.4 49.7	33.0	17.5	57.3	25.2	4.4	14.9	2.0	4.3	0.30	0.46	3	30	50	20	2.0	2.2
101	till	125	50	100	0.70	0.5	3.1	40.7 38.4	40.2	17.2	47.5	35.7	9.5	37.5	4.3	0.9 8.6	16.00	0.49	4	nd	nd	nd	15	
102	till	120	50	100	10.04	1.0	44.5	33.6	21.9	46.8	38.9	14.3	7.0	19.6	3.1	5.2	8.30	0.61	4	70	20	10	2.5	ND
104	till	88	50	610	11.22	1.1	27.1	36.9	36.0	30.6	41.3	28.1	5.1	15.4	2.3	4.3	6.5	0.5	4	30	20	50	1.5	2.0
	_	_				[_	_	_	ĺ	_	_												
Count		81	79	79	79	81	81	81	81	81	81	81	81	81	81	81	81	81	63	63	63	63		
Average		104	51	228	11.1	2.47	24.4	43.0	32.6	27.0	48.1	24.9	9.4	25.7	4.22	6.69	10.9	0.61	3.52	20.9	42.9	36.0		
Min		58	50	100	7.7	0.17	3.1	26.7	6.7	3.6	34.0	3.5	1.7	3.1	0.80	0.50	1.3	0.19	1.00	5.0	15.0	5.0		
Max		181	160	610	16.0	24.98	49.5	60.0	53.2	50.6	66.7	39.2	59.4	88.2	26.60	17.45	38.5	2.25	4.00	75.0	65.0	70.0		
75%ile		112	50	370	12.4	2.26	30.1	47.9	38.6	32.6	53.3	30.3	12.4	32.5	5.60	8.60	13.9	0.77	4.00	25.0	55.0	45.0		
90% Ile		133	50	490	13.6	7.31	39.5	55.5	45.5	41.6	62.7	35.2	19.2	47.2	8.60	10.70	20.3	1.11	4.00	ō/.5	0.00	60.0	1	
OTHER	SAMPL	E TYPE	S			L				L			L				-							
Short ID :	Litholog	Zn	Zn	Zr	Wt	6 1-2mn	r (>63)	(<63)	(<4)	(>50)	(<50)	(<2)	ml/g)	ml/gm	%	%	%		HCI	(>63)	(<63)	(<4)	From	To
	colluvium	106	50	370	14.36	9.0	48.6	42.3	9.1	51.7	44.7	3.6	6.4	29.3	2.9	9.4	12.25	0.31		00	50		2.0	3.0
2	diomint	123	50	600	11.32	3.4	30.2 AF 7	42.8	21.0	40.3	45.3	14.4	1.0	10.1	0.5	5.8 2.4	0.20	0.09	1	30	20	20	2.0	2.5
56	diamictor	1/1	12U 50	560	14.19	11.4	40.7 60 5	42.2	70	40.8 62.8	44.Z	9.0 5.2	16.0	1.3	7.0	2.1	14 20	1.45	4	80	30 15	5	2.0	2.D 2.5
6	sand	102	50	480	9.80	0.7	41 9	38.2	19.9	44.4	42.1	13.5	2.6	6.5	1.2	1.6	2.80	0.72	1	90	7	3	1.0	1.3
20	SS	79	50	100	11.51	0.9	79.2	15.0	5.8	80.4	16.9	2.7	32.4	50.1	14.5	7.3	21.80	1.99	3	nd	nd	nd	nd	nd
38	silty clay	119	50	100	11.08	2.5	16.4	39.8	43.8	18.8	45.8	35.4	9.4	26.3	4.2	7.0	11.20	0.61	nd	nd	nd	nd	nd	nd
40	s&g	111	50	630	16.62	6.4	85.9	11.6	2.5	87.2	11.3	1.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
48	gravel	59	50	520	17.22	10.6	78.1	19.5	2.4	80.9	17.8	1.3	5.4	20.6	2.4	6.2	8.70	0.40	nd	nd	nd	nd	nd	nd
49	bentonite	110	50	330	11.36	0.2	1.8	27.2	71.0	2.5	32.0	65.5	3.7	8.3	1.6	1.9	3.60	0.86	nd	nd	nd	nd	nd	nd
51	fluvial	88	50	500	17.62	8.7	37.5	54.8	7.7	38.9	56.8	4.3	3.2	10.8	1.4	3.1	4.60	0.46	nd	nd	nd	nd	nd	nd

Appendix 1, part 3. Geochemical and related data from surface samples discussed in this report

All values below detection limit are shown as 1/2 of detection limit nd = no data AA= atomic absorption spectrometry NA = instrumental neutron activation analysis

6 References

American Society for Testing Materials 1954. Tentative method for grain size analysis of soils; American Society for Testing Materials, designation D422-54 T.

Andriashek, L.D. 1983. Surficial geology of the Wapiti map area, NTS 83L; Alberta Research Council, Alberta Geological Survey, Open File Report 1983-23, 1:250 000 scale compilation map.

Bostock, H.J. 1970a. Physiographic regions of Canada; Geological Survey of Canada, Map 1254A, 1:5 000 000 scale.

Bostock, H.J. 1970b. Physiographic subdivisions of Canada; in Geology and Economic Minerals of Canada, (ed.) R.J.W. Douglas; Geological Survey of Canada, Economic Geology Report 1, Chapter II, p. 11–30.

Christiansen, E.A. and Ross, W.C. 1971. Carbonate analysis of tills using a continuously recording gasometer; Saskatchewan Research Council, Circular 5 G 71-5.

Dreimanis, A. 1962. Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus; Journal of Sedimentary Petrology, v. 32, no. 3, p. 520–529.

Klassen, R.W. 1989. Quaternary geology of the southern Canadian Interior Plains; in Quaternary Geology of Canada and Greenland, (ed.) R.J. Fulton; Geological Survey of Canada, Geology of Canada, No. 1, p. 138–174 (also Geological Society of America, The Geology of North America, v. K-1).

Fenton, M.M., Pawlowicz, J.G., and Dufresne M.B. 1994. Reconnaissance mineral and geochemical survey with emphasis on northern Alberta: MDA project M92-04-006, year 2; Alberta Research Council, Alberta Geological Survey Open File Report 1994-21, 170 p.

Pettapiece, W.W. 1986. Physiographic subdivisions of Alberta; Land Resources Research Centre, Research Branch, Agriculture Canada, 1:1 500 000 scale.

Twardy, A.G. and Corns, I.G.W. 1980. Soil survey and interpretation of the Wapiti map area, Alberta; Alberta Research Council, Bulletin 39, 134 p.

ymser	Unit Name	Description	General Morphology and Relief	General Thickness	Comments
1	RECENT Organic Deposits	Bog, fen: peats developed from sedges and mosses; wet,	Occupies depressions; concave topography; undulating	< = 1.5m	
2a	Colluvial Deposits	poorly drained; minor silty-clay and marl sediment Rough, broken land; stream and gully valleys; mixed glacial	morphology Veneer on low to high relief slopes; small floodplains	Generally thin (< = 1m), but variable in	
2b		and bedrock material, slope stability variable Soil creep; thin deposits derived from local bedrock; may resemble till in high plateaus and benchlands; very stony with sand loam to clay loam matrix	Occurs as stone stripes, circles, boulderfields at elevation > 1800m; otherwise found as a thin veneer	slump areas Variable, generally < = 1m though may exceed 2m in solifluction lobes	Has till-like appearance in southwest part of map area
3	Fluvial Deposits	Clay, silt, sand, gravel found along drainage channels of major rivers and creeks; variable texture both vertically and borizontally, poorly sorted	Level to undulating topography; terraces	Variable thickness; may exceed 2m	Gravel found along large mountain streams; and sand found along streams away from
4	Aeolian Deposits	Fine-grained sand in sheet or dune form; derived from fluvioglacial and lacustroglacial deposits; stone free	Local relief up to 5m; rolling to hummocky topography; in form of U-shaped and longitudinal dunes	Thick in dunes (> = 5m) but thin between dunes	Found in extensive areas east of Smoky and Wapiti rivers in northern part of map area
	PLEISTOCENE				
5	Silt and Clay	Rhythmically bedded yellow-brown silt and dark grey-brown	Broad, undulating topography; masks underlying	Variable; <1m - 4m; typically about 3m	Found in northeastern part of map area.
6	Silt, Minor Sand	Stratified silt; minor sand, clay; stone free. Surface may be	Broad plains near meltwater channels; found as a	Variable; generally >1m	Found in plains especially where Pinto Creek
7	Sand	poorly reworked by wind Fine to medium-grained sand deposited as inwash in proglacial	undulating veneer Found as deltaic plain landforms; undulating rolling	Generally thick (>2m)	empties into the Wapiti River Found in northern part of map sheet
		lakes; odd quartzite pebbles; occasional beds of gravel, silt, clay	topography		
8	Glaciofluvial Sand	Outwash sand with minor gravel, silt, clay; odd pebble up to	Assciated with meltwater channels; level to rolling	1.5 - 6m thick	
9	Gravel	2cm diameter Outwash gravel, coarse, minor sand; found as terrace deposits	topography Undulating topography on terraces	Variable; 1 - >30m thick	Terrace gravel along Little Smoky River
		of major rivers. In part valley train derived from valley glaciers	Didgod to willing towns in the state of the		composed mainly of rounded quartzitic cobbles
10	Ice Contact	Poorly sorted sand and gravel found in kames and eskers	Ridged to rolling topography; variable; generally >2m, <10m		
11a	Undifferentiated Glaciofluvial and	Stone free to slightly stony sand; may be glaciofluvial deposit modified by wind; overlies glaciolacustine deposits	Reflects underlying landform; occurs as a veneer	Generally <1m	Occurs in benchland plateaus and lower plains areas
11b	Aeolian Deposits	As above but overlies morainal deposits			
	Moraine Continental				
12	Ground Moraine	Clayey to sandy till, slightly to moderately stony, olive brown color; numerous erratics derived from the Canadian Shield	Undulating to gently rolling topography	Generally thin (<1m) in uplands to thick in lowlands (>5m)	Most of stones are derived from the mountains - limestone, metaguartzite
12		Found in plains and plateaus of northeast half of map sheet			orthoquartzite, sandstone
13	Hummocky Moraine	Clayey to sandy till, numerous erratics derived from the Canadian Shield	Moderate to high relief; hummocky topography formed in stagnant ice environment	Variable; generally thick (>10m)	As above
14	Ground Moraine (locally derived)	Yellow-brown till, friable to firm; moderately to exceedingly stony, pebbles mostly well rounded metaquartzites; minor Canadian Shield erratics; derived almost entirely from local bedrock material	Occurs mostly in high plateaus and benchlands; topography determined by underlying bedrock morphology; found as a veneer in most areas	Thin on uplands and steep slopes (<2m) Thick in deeper valleys	Found in central, south-central and southwestern parts of map area. May be very stony where unit overlies Tertiary gravel
15	Ground Moraine (overlying Tertiary gravel)	Till derived from Tertiary gravel; gravel has a high content of well rounded quartzites and sandstones; till typically very stony	Till found as a discontinuous veneer over gravel caps on tablelands and plateaus; topography undulating to gently rolling	Till generally thin to discontinuous Gravel thickness ranges from 1 to 10 m	Occurs in plateaus east of Simonette Tower in southeast part of map area. Shield erratics are very few to absent
160	Cordilleran	Stopy calcareous till friable, dark, grey-brown color, loam	Along foothillo unit forme grooved, flutes and drumlin		
10a		matrix; contains rocks derived from the Rocky Mountains local bedrock; stagnant ice topography uncommon	fields; found on high relief rolling bedrock	variable: 0 - 5m; generally <2m	parts of map area
16b		Coarse textured, friable yellow-brown to dark brown till; exceedingly stony; pebbles are well rounded quartzites and angular sandstones; unit contains abundant colluviated till and	Occurs as a veneer of flutes, grooves, lateral and end moraines on steeply sloping ridges with high relief	Variable to discontinuous; generally <2m thick	Found in Rocky Mountain Foothills in southwestern part of map area
16c		Stony till with a silty-clay matrix; derived from massive, dense, glacially reworked shales, variable stone suite derived from mountains	Morainal veneer on a moderately rolling topography		Found in Rocky Mountain Foothills
17	Cirque Valley Glacier	Very stony till, almost gravel like composition, composed of local		Variable thickness	
18	Moraine	bedrock Dissected lateral moraine of large valley glaciers: till and	Terrace bench along Smoky River	Variable: generally >2m	
10		glaciofluvial deposits in form of poorly defined benches; very stony and calcareous; may be capped by outwash gravel in places		Valiable, generally >211	
19	Moraine-Colluvium Undifferentiated	Weathered till, carbonates leached to 2.5m; very stony, resembles colluviated bedrock material in places	A veneer on level, elevated benches and plateaus	Generally thin (<5m)	Found in southwest part of map area. Interpreted by L. Bayrock to be outside of Wisconsin glaciated area
	Mixed Continental- Cordilleran				
20	Ground Moraine	Till containing erratics from both the Canadian Shield and from	Level to undulating topography	Generally thin	Found in northwest corner of the map area
		coalesced from the two source areas			
21	Hummocky Moraine	Same unit as above, except till deposited from stagnant ice	ниттоску topography	Generally thick	Found in northwest corner of the map area
22	Shale, Siltstone,	Outcrops found in south-central and central parts of map	Undulating to moderately rolling upland plateaus	Weathered to a depth of 0.5 - 2m	Commonly stratified; shale may resemble
	Coal	area; commonly mantled by colluvium			Iacustrine deposits; weathered shale prone to slumping
23	Sandstone	Paskapoo Sandstone found in the upland plateaus; Blackstone, Cardium, Wapiabi, Brazeau sandstones in the foothills.	Steeply sloping scarps and ridges; moderate to high relief	Weathered to a depth of 0.5 - 2m	
24	Conglomerate, Sandstone	Located in the Rocky Mountain Foothills in the southwest corner of the map area; all exposuers of bare rock with less than 0.1m	Strongly rolling to very hilly	Weathered to a depth of < 0.1m	Occurs at tops of glacially abraded mountains mountain slopes, canyons

	Scale 1:250,000								
5	0	5	10	15	20 Kilo				
5	0	UTM Zone 1	10 1 NAD 27		15				
Map 239 L. D. Andriashek Digital version of Open File Report 19 Compiled from Bayrock, 1972, and T Figure 2.1 of Earth Sciences Report	983-23 wardy, 198 2000-12	80;			Infor Alber Alber 4th F 4999 Edmo T6B				
Digital Geology Compilation D.K. Chao	A	GS			Telep Facs Web www. www.				
Alberta Energy and Utilities Board	Alberta G	eological Su	rvey		Publis				

lephone (780) 422-3767 **csimile** (780) 422-1918 **eb Sites:** /w.ags.gov.ab.ca /w.eub.gov.ab.ca

blished 2001